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Abstract

Automatic fault detection and recovery would be a mandatory requirement for

a satellite where some degree of autonomy is required. This thesis reviews some Al

techniques used for the detection of satellite anomalies, and concludes that the

model-based reasoning paradigm is best suited for automated on-board fault

detection because it can cope with situations not necessarily programmed into the

knowledge base. Using the Scheme language (a dialect of LISP) and its SCOOPS

object oriented extension, development of software is described that models the pitch

control channel in the attitude and velocity control subsystem of a typical geo-sta-

tionary communications satellite. This model is used by the model-based reasoning

algorithm to diagnose faults in the real system. The algorithm used, is based on

Scarl's "Full Consistency Algorithm", which is suitable for systems that have many

sensors, but has limitations when applied to systems that are dependent on time or

have feedback loops. These limitations were overcome by using a model that did not

include time dependent objects and by 'breaking the loop". It was found, for this

problem domain, that the reasoner's model did not have to be identical to the real

system to be able to successfully detect the cause of an anomaly.
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MODEL-BASED REASONING IN THE

DETECTION OF SATELLITE ANOMALIES

I. Introduction

This chapter provides some background to the satellite anomaly detection

problem. It states the problem and the objective of this thesis work, and gives an

overview of the methodology used to solve the problem and achieve the objective.

Background

Autonomous satellite operation has been an endeavor of spacecraft designers

ever since the first satellite launches in the mid-1950s. Satellite operation is a

complex and people-consuming business and even now, in the 1990s, is still very

dependent on ground support. Autonomous operation is a matter of survival. In

times of conflict, vulnerable ground stations will become targets, and if destroyed,

hundreds of satellites can fly aimlessly out of control. Autonomous operation is also

a matter of removing the burden of complex operation from the people. The people

who "fly" these satellites are experts in their field and take years of training and

experience to become effective. With Shuttle operations back in full swing, the

number of satellites is increasing and with the introduction of the Strategic Defence

Initiative (SDI), the numbers can become so great that there may not be enough

human experts to control these spacecraft or ground systems to support them.

The "experts" are in greatest demand when things go wrong and the

anomalous situation has to oe quickly resolved. Owing to Artificial Intelligence (AI)

techniques developed over recent years, "not-so-expert" operators can resolve
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anomalous situations by taking advice from a rule-based expert system. Although

these expert systems alleviate the problem of having many experts on hand, rule-based

expert systems suffer from a major drawback: they reason using heuristics. Heuristics

are the "rules-of-thumb" given to the knowledge engineer by the expert. Because of

system complexity, heuristic reasoning (often called shallow reasoning) cannot account

for every possible anomalous situation that may occv," This deficiency has two

consequences. First, experts will still be required to solve anomalies not accounted

for in the rule base, and second, the expert system cannot reliably be included as an

onboard system, and so cannot be used to make the satellite truly autonomous.

If true satellite autonomy is ever to be realized in the domain of anomaly

detection, a better method than rule-based expert systems must be found. Model-

based reasoning (also known as model-based expert system) may be that method.

Model-based reasoning uses a computer model of the system running in parallel with

the real system. The continuous comparison of sensor data and the states in the

computer model generates a discrepancy signal if an anomaly occurs. The anomaly

is then resolved by a deeper reasoning process that depends only on the system's

structure and function, and not on heuristics. Provided the real system can be

accurately modelled and there exist sufficient sensors, this method promises to resolve

anomalous situations not considered in the design of the model (Fulton, 1990:55).

Problem and Objective

The problem is that current rule-based expert systems reason using heuristics

and cannot account for every anomaly that may occur in a complex satellite system.

The objective of this thesis is to investigate the application of model-based reasoning

to satellite anomaly detection. This will be done by building a prototype model-based
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expert system that can be validated against real satellite telemetry data or computer

simulation of a satellite system.

Scope

To make a satellite totally autonomous requires the automation of all aspects

of satellite operation. This study focuses on the fault-management aspect of satellite

operations, i.e., anomaly detection. The model-based expert system prototype will

be ground-based and applied only to a subsystem of the satellite.

Methodology

The following methodology briefly outlines procedures used to attain the

objective listed above:

Understanding the Satellite Anomaly Detection Problem. An appreciation of

the problems associated with satellite anomaly detection was achieved by searching

the literature on this subject. First, a search on manual methods currently used to

diagnose faults on satellites was made. Second, various Al techniques used to

achieve the same result was studied in the literature. This study, recorded in Chapter

II of this thesis, provided a good foundation and understanding of the anomaly

detection problem.

Understanding the Model-Based Reasoning Paradigm. To provide an

unders anding of how model-based reasoning is used in fault diagnosis, research was

carried out by reviewing literature, mostly research papers, on the subject. Particular

attention was paid to techniques relating to anomaly detection in spacecraft, and the

problems associated with that domain. The research in this area is recorded in

Chapter III.
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Determination of the Satellite Subsystem to Model. Detailed information

required to characterize satellite subsystems was studied. This information came

from literature search, satellite manuals and past AFIT theses that have used rule-

based expert systems or other methods to conduct anomaly detection. The most

useful document for this research came from an Orbital Operations Handbook for

a geo-stationary satellite. The subsystem selected was the pitch control channel of

the attitude and velocity control subsystem Details on this subsystem have been

recorded in Chapter IV.

Finding the Best Computer Language to Use. To find the best computer

language for this study, a review was made of several Al sybolic languages, expert

system shells and object-oriented languages. Information for this came from

literature search and through interviews with people experienced with the languages

in question. Out of a short list of four languages suitable, and available, the language

Scheme with the SCOOPS object oriented extension was selected as the language for

prototyping the system. Selection criteria and other information on this language has

been recorded in Chapter V.

Development of the Prototype Software. Software was developed that

implements one of the model-based reasoning paradigms examined in Chapter III.

Software was also developed that simulates the pitch control channel in the Attitude

Control system. This model was used by the reasoner, and a copy was used to

simulate the real pitch control channel to test the reasoner software. The software

development is recorded in Chapter V.

Documentation of Results and Analysis. A number of tests were carried out

on the designed model, and the diagnostic reasoner. Results and analysis of these

tests is recorded in Chapter VI. Validation of the software was carried out using a

computer simulation of the pitch control channel.
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Drawings Conclusions and Making Recommendations. Conclusions were

drawn and recommendations were made on the basis this thesis research, and from

the results and analysis of the developed prototype model-based reasoner.

Conclusions and recommendations are recorded in Chapter VII.
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II. The Detection of Satellite Anomalies

Introduction

The review of literature presented here is the first of two parts. The first part

is intended to provide an understanding of the satellite anomaly detection problem

and was done by a literature review of the current methods used to diagnose

anomalies in satellites. This chapter includes a brief look at the satellite systems and

subsystems themselves, the way anomaly detection is done manually, and a study of

some AI techniques used to get the same results. The second part of the literature

review (next chapter) looks deeper into the various model-based reasoning techniques

used in many systems ranging from jet aircraft to electronic circuits. The background

research from these two studies should provides a foundation for the design of an

expert system to diagnose satellite anomalies using model-based reasoning.

To gain an understanding of the anomaly detection problem, this chapter's

main aim is to review current AI techniques used in the detection of satellite

anomalies. This is done by describing a typical satellite system and highlighting the

subsystems where detection of anomalies is frequently required. Next, a brief

description of manual methods for anomaly detection, as used in a ground control

environment, is given. This is followed by examples of various AI techniques that are

currently used to diagnose faults in satellite systems.

Satellite Description

In the context of this paper "satellite" refers to any craft operating outside the

earth's atmosphere. That includes craft that are manned or unmanned, in earth orbit

or undergoing inter-planetary travel. Most satellites (estimated at about 95%) are
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unmanned and in earth orbit; the remainder include such craft as the space shuttle,

interplanetary craft (such as Voyager and Galileo), and future craft such as the

National Aero Space Plane (NASP) and the Space Station. Future spacecraft are

expected to be so complex that humans will not be capable of controlling the total

systems without the aid of AI techniques.

Following is a description of the major subsystems in a satellite:

Electrical Power Subsystem. The electrical power subsystem ensures

operation of the satellite over its lifetime. The power source can be electro-chemical

(batteries, fuel cells etc.), solar (most common), or nuclear (usually radio isotope).

Guidance and Control Subsystem. The guidance and control subsystem

ensures that the satellite is in the correct orbit and pointing in the right direction.

Propulsion Subsystem. Propulsion is obviously required for interplanetary

missions, the space shuttle and the NASP, but less obvious is the requirement for fuel

on-board an unmanned earth-orbiting satellite. Orbital perturbation due to the

oblateness of the earth, third-body effects (sun, moon and planets) and drag cause

satellites to be shifted from their nominal orbits, hence propulsion is required to

correct for this defect (Cochran, 1985:Ch 2, 41-44). This is especially true for geo-

stationary satellites which must remain fixed at a certain point above the earth.

When the fuel runs out, these satellites are out of control.

Mission Requirements Subsystem. This subsystem contains the hardware,

such as sensors and scientific instruments, required to achieve the mission of the

satellite.

Communications, Command and Control (C) Subsystem. Today's satellites,

even manned craft, are controlled by ground stations. The C3 subsystem includes all

the hardware and software necessary to ensure complete control of the satellite. It

includes the transmitters, receivers, antennas, computers, telemetry hardware (that
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relay the status of on-board sensors to the ground) and transducers that convert

command signals from the ground to electrical and mechanical operations that

control the satellite. Maintaining 24-hour communications with the satellite is a

significant operation in itself. Communication can only occur when the satellite is in

view, necessitating the use of worldwide tracking and commanding facilities

(Barry, 1987:276).

Environmental Subsystem. The environmental subsystem of a manned

spacecraft is a significant part of the overall system. Even for smaller unmanned

spacecraft, this subsystem is required to monitor and adjust to environmental effects

such as overheating (due to sunlight and internally generated heat), space charging

effects (due to energetic space radiation and flying through charged particles) and

space debris (which includes micrometeors) (Koons and Gorney, 1988:1).

Anomalies in any of the above subsystems can spell the end of a mission.

Hist-rically, it has been found that two subsystems in particular, the electrical

subsystem and the guidance and control subsystem, have a much higher probability

of breaking down than do the others. These subsystems are clearly defined and have

an order of complexity that make them good candidates for automation of fault

diagnosis and recovery (Passani and Brindle, 1986:255; Rampino, 1987:4; Howlin and

others, 1988:178). This is supported by the relatively large number of expert systems

that use these subsystems as their domain for anomaly detection.

Manual Methods of Anomaly Detection

In his discussion on the present satellite command and control environment,

Barry stated that every hour of satellite operation requires hundreds of man-hours

of ground control (Barry, 1987:276). This statement gives a clear indication of the

hours of work required to sustain satellite operations. It also supports the growing
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interest and pressing need for using AI techniques to ensure operability when the

number of satellites becomes large and their systems more complex. For the domain

of anomaly detection, people also can become a critical resource as a team of

satellite engineers is usually required to resolve non-routine anomalous situations.

This is even more prevalent in the US Air Force, which has total control of the

NAVSTAR Global Positioning System (GPS), because their satellite engineers are

largely military personnel who are transferred to other assignments just when their

expertise is peaking (Rampino, 1987:2).

Received telemetry data that is stored on disk or tapes is the basis of

present diagnostic techniques. Sensor status is extracted from this digital data stream

and continuously monitored to determine the health-state of the satellite. Decoded

information from the tapes is examined when an anomalous situation occurs and the

symptoms compared to a hierarchical fault tree in an operations manual. The

problem with this deterministic-check-list approach is that the data points must be

prespecified to isolate the problem (Barry, 1987:278).

When the cause cannot be determined from the fault tree, the data is analyzed

by the experts. Computers sometimes aid in this analysis but only to the extent of

performing trend analysis on the telemetry data. This manual (or computer-aided

manual) way of doing business is very time consuming and in a critical or military

situation may not be acceptable.

On fault confirmation, operators effect recovery by issuing telecommands to

switch in redundant systems; alternatively, they may reconfigure a subsystem and live

with a degraded system. Usually, the first step taken is "safing" the satellite by

removing power from suspected units to prevent further damage or possible loss of

the spacecraft.
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Al Techniques for Anomaly Detection

Rue-Based Exet Systems

The ground control environment was one of the first areas that saw the use

of Al techniques in the field of anomaly detection. Several rule-based expert system

prototypes have been designed that use the information from the fault tree in the

operations manual and the expertise captured from the satellite engineers. The

expert system is used strictly in an advisory capacity. It responds to an operator's

input (fault symptoms) by generating a list of probable causes, usually one or more

suggested solutions, and if asked, the reasoning used to come up with the result.

A rule-based expert system is an AI technique that uses knowledge in the form

of heuristic rules (if ... then... ) to infer a conclusion given the facts. The rule-based

expert system is probably the most mature of the AI techniques used to date. This

is evidenced by the comparatively larger number (compared with other Al techniques

for fault detection) of prototypes that have been designed for anomaly detection in

recent years. Many have been successfully tested as prototypes, but fully operational

expert systems are rare in the literature.

The following examples are representative of the rule-based expert systems

that exist as prototypes today:

NAVARES. The NAVstar Anomaly Resolution Expert System prototype is

specifically designed for inexperienced US Air Force satellite operators who control

the Global Positioning System (GPS) satellites (21 satellites in the mature system)

without extensive contractor support. It has been tested and successfully diagnoses

many anomalies in the Attitude, Velocity and Control Subsystem, and the Electrical

Power Subsystem. Users interact with NAVARES by answering queries about the

status of the subsystem components. NAVARES then uses its expert knowledge to
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diagnose the anomaly and recommend a remedy. NAVARES uses the GURU expert

system tool and database manager (Rampino, 1987).

MOORE. MOORE is another rule-based expert system prototype; it gets its

name from the expert, Mr Robert J. Moore, who provided the knowledge. Its

function is to assist in the diagnosis of problems with the antenna-pointing and earth-

pointing functions of the attitude control system on the Tracking and Data Relay

satellite (TDRS). TDRS is an operational geosynchronous communications satellite.

Like NAVARES, MOORE is intended to assist operators at the TDRS ground

terminal in troubleshooting problems that are not readily solved with routine

procedures, and without expert counsel. MOORE uses Texas Instruments' Personal

Consultant Plus expert system building tool. It was selected over Teknowledge's M.1

because of smoother graphics integration, superior editing capability, preferable

development environment, and attractive local support and documentation (Howlin

and others, 1988).

DAM. The Data Analysis Module is the first of four expert systems being

developed by the Jet Propulsion Laboratory for a prototype Generic Payload

Operations Control System (GPOCS). Unlike NAVARES and MOORE, which

query the operator about the status of satellite subsystem components, DAM

monitors incoming telemetry data and performs trend analysis based on a knowledge

base and historic data archived on an optical disk storage device. The aim of the

system is to respond very quickly to a developing problem, isolate and diagnose faults,

pinpoint the probable fault location and recommend corrective action. DAM uses

the CLIPS forward chaining expert system shell (Busse, 1988).

PMAD. The Power Management And Distribution system is a combination

expert system and graphics interface prototype that allows an astronaut on board the

space station to diagnose problems with the power subsystem. The astronaut enters

sensor status on a graphics workstation and the underlying expert system (transparent
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to the user) determines a probable cause using its rule-base. The suspect component

is flashed in red on a schematic of the system under test. Although the prototype

does not have enough rules to diagnose anomalies in a real space station, it is an

excellent vehicle for expert system development. Indeed, one of its aims was to serve

as a training tool for potential users and for those designing the expert system and

developing the knowledge-base. The system is build on a Symbolics 3675 LISP-

machine running the KEE expert system shell and the IRIS 3120 graphics

workstation. The graphics interface and the communications interface (between the

Symbolics and IRIS) are written in C (Hester, 1988).

All the above rule-based expert systems are used strictly in an advisory

capacity. That is, the human has the final say. Graphics also play an important role

in the human/computer interface. MOORE, DAM and PMAD have placed a high

priority on color-graphics interfaces to ensure efficient operation and ease of data

interpretation by the operator.

Although these expert systems alleviate the problem of having many experts

on hand, rule-based expert systems suffer from a major drawback: they reason using

heuristics. Heuristics are the "rules-of-thumb" given to the knowledge engineer by

the expert. Unfortunately, heuristic reasoning (often called shallow reasoning) cannot

account for every possible anomalous situation that may occur in a system as complex

as a satellite (Cochran, 1985:49). This deficiency has two consequences. First, a

demand for human experts will still exist to solve anomalies not accounted for in the

rule base, and second, a satellite cannot be made truly autonomous using an expert

system that does not reliably cover all failure modes.

Ease of programming and rapid prototyping is the greatest advantage of rule-

based expert systems. However, if true satellite autonomy is ever to be realized in

the domain of anomaly detection, better methods than rule-based expert systems

must be found.
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Causal Networks

A causal-network expert system attempts to overcome some of the problems

associated with rule-based expert systems. Rule-based expert systems lack causal

knowledge because they do not have an understanding of the underlying causes and

effects in a system (Giarratano, 1989:8).

A causal-knowledge expert system is constructed by using a network of nodes

and arcs to model the cause-effect relationships of the system in question. Consider

two nodes A and B, and an arc from A to B. The A node is a symptom (failure

state) and the B node is a cause of that symptom. The arc usually has a certainty-

factor (CF) weighting between 0 and 1 that provides a measure of the degree to

which B is a cause of A. Human experts determine the structure of the network and

the weight values on each arc.

During a typical diagnosis run, fault hypothesis testing is carried out on each

node on a path from an input symptom to an output cause. Depending on the

outcome of the tests, an assignment of a CF value (initially set to zero) is made to

each node. The inference engine cycles through three steps: selection and execution

of the most appropriate test; analysis of the test result; and, modification of the CF

of the nodes. When testing is complete on all path combinations, the terminal node

with the highest certainty factor gives the most probable cause. The path used to

reach that node can also be displayed for justification of the reasoning process (Long-

oni and others, 1987).

Multiple inputs and outputs cause the network to become complicated quickly.

For example, several arcs with different weights may exit from one node, showing

that several causes may account for one symptom. Also, several arcs may enter one

node, showing that several symptoms may result from one cause. To complicate
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matters even further, the network is usually more than one layer deep. The internal

nodes represent symptoms that may be caused by other failure states.

Following is an example using a causal network expert for detection of satellite

anomalies:

CANDIES. The CAusal Network DIagnostic Expert System is a conceptual

prototype for the diagnosis of the Data Management Subsystem on a satellite. This

system differs from the others in that it is intended as an on-board expert system with

emphasis on autonomy. For Fn on-board system, Longoni states that expert system

should provide facilities to:

...handle emergency situations when there is a loss of ground contact;
enhance the automatic operation for deep space vehicles where
reaction time due to long distances could be longer than needed;
resolve the problems encountered because of minimal ground contact
for low earth orbit spacecraft; and, reduce the costly involvement of
human operators. (Longoni and others, 1987:294)

CANDIES will have a distributed architecture in which a supervisor expert system

manages the communication among several expert subsystems. Each expert

subsystem will monitor, diagnose and plan recovery action for the subsystem it

controls in real time. For the first implementation, the Data Management Subsystem

(DMSS) was chosen because: it is important to the rest of the spacecraft; much local

knowledge is available about the subsystem; and, fault diagnosis on that subsystem

promises effective results in the near term. The prototype is able to deal with 17

symptoms, selects up to 56 tests to end up with 40 different diagnosed faults. The

CANDIES prototype is run on a VAX and is written in Franz LISP (Longoni and

others, 1987).

The biggest disadvantage of causal-network reasoning is the requirement to

account for almost every possible symptom and its associated cause or causes.

CANDIES, which currently has 100 nodes and 400 causal links, deals with only 17

symptoms and already has performance problems running on a VAX (Longoni and
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others, 1987:297). This ambitious project to totally automate a satellite may take

more processing power than is currently available.

Neural Networks

Neural networks have a structure similar to that of causal networks. The

weights assigned to the arcs on a causal network are similar to the weights between

nodes in a neural network. In a causal net the weights on the arcs are assigned by

a human expert, and each node output value is determined by hypothesis testing. In

a neural net, the weights are determined by "training" the network and the output-

value of each node (or neuron) is determined by a non-linear function of the inputs.

There are many different types of neural nets. One of the most popular is the

back-propagating net. This net is trained by putting a known pattern onto the input

layer (these could be a set of symptoms) and the desired output pattern onto the

output layer (which could be a cause of the symptoms). After a random value is

assigned to the weight of each arc, the weights on all the arcs in the network are

adjusted by propagating values from the output layer back through the hidden layers

to the input layer. Typically, this is done thousands of times until the weights reach

a stable state and the desired output can be produced from that particular input

pattern to a high degree of certainty. Once trained, the weights remain fixed and

when that input pattern occurs again in a fault scenario, the output should respond

with the correct diagnosis. An advantages of neural nets is that the input does not

have to be exactly the same as the one used for training. Therefore, the net can deal

with a degree of uncertainty.

A trained neural net is a fixed entity and cannot normally be changed on the

fly. Neural nets can be designed in many different ways and can therefore be

customized for different applications. Their many different topologies, training

methods and activation functions allow architectures that look nothing like causal
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networks. For example, another method for training networks is to have the nodes

in the input layer represent time points. This allows transient data to be detecLed;

such data is often a first indication of trouble. Dietz used this temporal technique

as one of his neural net training methods for fault diagnosis on a jet engire (Dietz,

1988:18).

Seifert demonstrated the feasibility of using neural nets in the detection of

satellite anomalies in his master's thesis. He applied neural nets to a particular

anomaly in the Inertial Measurement Unit of the Attitude Determination and Control

Subsystem that is not detectable by the flight software (Seifert, 1989).

Although neural nets can be trained to handle fault patterns that are similar

to those used during training, they cannot handle fault patterns that are too different

and not accounted for in the training process. Like rule-based expert systems, neural

nets do not understand the underlying function and structure of the system. Like

causal networks, neural nets could be trained to account for most anomalies that may

occur, but they soon become very large and the extra training time required becomes

impractical.

Model-Based Exper Syvt,,rns

Rule-based expert systems, causal networks and neural nets have knowledge

about the way systems fail. That is their main downfall; the number of ways a system

can fail, and all their associated symptoms, can quickly grow to unmanageable levels.

A model-based expert system, on the other hand, has knowledge about the way the

system works. Model-based reasoning is a deep reasoning method that uses

knowledge about the system's structure and function to diagnose faults. A simulation

model of the system is operated alongside the real system. Continuous comparison

of sensors in the real system to those in the model provides an alarm when an
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anomaly occurs. The discrepancy between the real and model sensors initiates a

diagnostic search (the model-based reasoning) for the culprit components.

Another major problem with rule-based expert systems is that they depend

very much on the integrity of the sensors (Scarl and others, 1987:360). To cope with

this problem, process monitoring expert systems typically have up to three-quarters

of their rules written for sensor validation (Fulton, 1990:49). Since a sensor is just

another component in a model-based expert system, validation occurs automatically

by the reasoning mechanism. In a sensor-rich environment, model-based reasoning

can detect non-intuitive anomalies and even failures that were not considered during

the designer of the system (Fulton, 1990:55).

Some authors have stated that model-based expert systems are more

complicated, difficult to set up, more costly, more inefficient for rapidly changing

inputs and more limited by onboard computing power than rule-based expert systems

(Rampino, 1987:19; Passani and Brindle, 1986:255; Longoni and others, 1987:295).

The knowledge for the design of the model comes from the engineering schematics

used to design the system. Therefore, an expert is not required to help with the

design of the knowledge base. Knowledge for rule-based expert systems comes from

an expert who has much experience in the domain of interest. Although it is easier

writing rules than designing a computer model, the rules come from a knowledge

acquisition phase that is usually a very difficult interaction between a knowledge

engineer and the domain expert. The success of this interaction is crucial to the

quality of the final product.

Model-based reasoning does have its drawbacks; if there are no (or very few)

sensors in the system, or if there is no way of probing into the system, or if a

complete and accurate model cannot be built, model-based reasoning cannot work

successfully (Fulton, 1990:55). The lack of sensors is a major drawback for any

diagnostic system (even a human), and is not peculiar to model-based systems.
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Following are examples of two important expert systems that apply model-

based reasoning to the detection of faults on space systems:

LES. The LOX (liquid oxygen) Expert System is a process monitoring and

fault location system that has been developed at the Kennedy Space Center to

monitor the loading of liquid oxygen onto the space shuttle. The domain includes

analog and discrete inputs (commands) and sensors, and other objects such as

transducers, relays, solenoids, valves, etc. These objects are represented in the model

using a Frame Representation Language (FRL). The user interfaces with the system

using on-screen schematics, which are generated automatically from a database, in

block diagram form if desired. Discrepancies between sensors and the model are

highlighted, and when selected with a mouse, the object can be tested. LES runs on

a dedicated Symbolics 3600 and diagnosis takes from 10 to 45 seconds (summer 85)

(Scarl et al, 1985:416).

PARAGON. Ford Aerospace has developed a system, named PARAGON,

that interacts with an expert system builder to model a satellite subsystem for

automated fault detection and correction. PARAGON also generates LISP code to

simulate the satellite subsystem to allow verification of the model. Once verified, the

model becomes the knowledge base for an expert system in which modules detect

and diagnose malfunctions and suggest corrective actions. Blasdel's paper (Blasdel,

1987) describes how PARAGON is used to model a satellite's electrical power

subsystem.

Hybrid Systems

Rarely can a single Al technique produce the desired results. Many

researchers have realized this and have combined several AI techniques to achieve

their aims. The diagnostic systems below are examples of hybrid systems that makes

use of the rule-based and model-based techniques discussed above:
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ISA. The Integrated Status Assessment expert system prototype was built to

perform Station-wide failure diagnosis on the Space Station. It is a small part of

MITRE Corporation's development of the Operations Management System (OMS)

which automates many aspects of flight control for the Space Station on-board

systems (Marsh, 1988:60). The prototype's domain is the communications and

tracking system. The ISA system is designed as a hybrid expert system that uses both

rule-based programming and qualitative modelling. Qualitative modelling is a model-

based reasoning approach that uses terms such as "good" or "bad" to describe

components instead of numerical information that would be used in a quantitative

model. Interestingly, ISA uses deep reasoning to reduce the amount of rules for its

rule-based expert system and to "home-in" on a specific component. The rule-base

(shallow reasoning) is then used to reason about that component. This is the reverse

of most hybrid systems that use deep and shallow reasoning. Marsh claims: "The

shallow reasoning rules can handle many situations that evade deep reasoning rules

which depend upon specifics about a component's structure" (Marsh, 1988:70). The

prototype was hosted on a symbolics 3600 series computer and written in ZetaLisp

and OPS5.

ACES. ACES is an Attitude Control Expert System prototype that detects

problems in the momentum wheels of the DSCS-III satellite. This system uses

telemetry tapes for its input and reasons about the data received using a rule-based

expert system and quantitative and qualitative modelling techniques. In this case

mathematical models are used to describe the function of the momentum wheels.

The rule-base is used to hypothesize potential faults and the device models are used

to confirm or deny them. The system contains approximately 50 rules and can

correctly identify any problem with the reaction wheels which an attitude control

simulator can simulate. (Passani and Brindle, 1986)
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Seifert's thesis, discussed above under neural nets, describes a hybrid system.

Following detection of a malfunction by the satellite's flight control software, Seifert's

rule-based expert system determines what tests must be performed by the satellite

software. The expert system and neural net then analyze the results to determine the

corrective action (Seifert, 1989:3).

Summary

This chapter has looked at some current work using Al techniques in the

diagnosis of satellite anomalies. All the examples given are listed as prototypes, so

it appears very few are actually working in an operational environment. The

techniques discussed have advantages and disadvantages, hence the need for hybrid

systems. From the literature searched so far, it seems that the technique best suited

for anomaly detection on an autonomous satellite is model-based reasoning. Model-

based reasoning uses knowledge about the way a system works. The amount of

knowledge required for this type of system is small when compared to the alternatives

that require more knowledge about how a system can fail. Sensors compound the

problem. They must be considered as components that can fail. For rule-based

systems, or other systems that rely on knowledge on how a system can fail, sensor

validation can result in a diagnostic system that can quickly become unmanageable.

Model-based reasoning can only work successfully in a sensor-rich environment with

complete and accurate models of components in the system. To achieve total

autonomy, a satellite must be designed from the ground up to include the sensors,

redundant components and the diagnostic engine to detect and recover from

anomalies. Of course, this will add extra expense to the spacecraft, but this must be

traded against the benefits to determine its worth.
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III. Model-Based Reasoning

Introduction

There are a number of ways that model-based reasoning can be accomplished.

This chapter reviews methods based on work done in the early 1980s using a

constraint propagation technique. The technique is not without its problems, but

over the last several years, on-going research has overcome some of those early

problems and makes the technique suitable for the detection of anomalies on

satellites. The purpose of the research for this chapter was not only to look at the

various approaches to model-based reasoning but also to help determine the best

approach to use for the detection of satellite anomalies.

The chapter begins with a general discussion of model-based reasoning and

some special problems pertaining to satellite anomaly detection. This will be

followed by a description of the basic technique pioneered by Davis and others, a

discussion of its strengths and weaknesses, and a look at some of the variations of the

technique that make it attractive for the domain of satellite anomaly detection.

Model-Based Reasoning

Model-based reasoning is also known by other names: "deep reasoning" and

"reasoning from first principles" are popular in the literature. The term deep

reasoning is intended to separate it from shallow reasoning. Shallow reasoning usually

refers to empirical or rule-based expert systems that have no real understanding of

system they are trying to diagnose. Reasoning from first principles is another phrase

used to describe model-based reasoning, and tries to convey the idea that the

reasoning mechanism has a fundamental understanding of the device in question.
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Depending on the problem domain, the description of the device can be modelled

using mathematical functions (such as differential equations) or using propositional

logic.

The knowledge representation used to describe the model, and the reasoning

mechanism used to determine which component is faulty, usually depend on the

problem domain. However, much of the current research effort in model-based

reasoning is concentrating on coming up with a domain independent inference engine

for fault diagnosis. No matter how the knowledge is represented, or how the

inference engine operates, the essence of model-based reasoning is that a model of

a real-world system is constructed in a computer; this model simulates the real-world

system's structure and behavior. The simulation is used to predict the way the real-

world system should operate. If there is a discrepancy between the operation of the

real-world system and the computer model then the diagnostic reasoning mechanism

attempts to determine which component, or components, is causing the discrepancy.

In the early years, most research on model-based reasoning was applied to the

fault diagnosis of electronic circuits (mainly digital systems). Many subsystems on

satellites include control systems and other closed loop systems that are analog in

nature. The number of sensors, and their placement on the satellite, are fixed.

Obtaining data from places where there are no sensors is not possible. In contrast,

technicians troubleshooting electronic circuits can be guided by a model-reasoning

system to probe anywhere in the circuit.

A model, by definition, is only a representation of something else, and no

model can represent the real world system exactly. Fortunately, the model need only

be as accurate as required to allow for the detection of faults that would cause a shift

in some intended or specified operation of the system. In an autonomous satellite,

fault detection would only be required for a component or subassembly that can be

replaced or reconfigured automatically onboard. More sensors would allow detection
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of faults at a higher resolution, but fault diagnosis of these lower level components

is simply not necessary. In space, nothing could be done about it.

Diagnosis of faults on a satellite is a low-resolution problem. However, the

same reasoning techniques used to determine faulty components in electronic circuits

could be used for the larger subassemblies on the satellite. For example, a servo-

amplifier used on a satellite's attitude control subsystem would be treated similarly

to an AND or OR gate in a digital logic circuit. The fact that one is analog and the

other digital in nature just means that there will be differences in the functional

description of the components, but not necessarily in the reasoning process.

Randall Davis(Davis, 1984)

In 1984 Randall Davis, an AI researcher at MIT, produced a paper called

"Diagnostic Reasoning Based on Structure and Behavior" which spawned

considerable follow-on research efforts in this area, judging from the many authors

that have cited his work. Davis built on earlier research done by Al pioneers such

as J. De Kleer (de Kleer, 1976; de Kleer, 1979; de Kleer and Brown, 1982), G.

Sussman (Sussman and Steele, 1980), J.S. Brown (Brown, 1982) and M. Genesereth

(Genesereth, 1981). His paper focused on the diagnosis of faults in digital logic

circuits and uses the technique of constraint propagation and constraint suspension to

generate a list of candidate components.

The process of candidate generation (determining which components may be

failing) and symptom generation (how they may be failing) is what separates Davis's

technique for troubleshooting from the traditional techniques which use test

generation and verification methods alone. Test generation and verification (setting

known inputs to a device and observing the outputs) is still used in Davis's technique,

but it is applied only after generation of the candidate list.
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Stucht

Davis describes the structure of his circuits in two ways:functional organization

and physical organization. These produce two distinct interconnection descriptions.

One represents knowledge at the schematic level and the other is a hierarchical

description at the block diagram level. His components are built on three concepts:

modules, ports and terminals. The modules are the components represented as a

black box. The ports are where information flows into and out the module, and the

terminals represent the physical connection which can be probed for measurement

or superimposed with other terminals to connect modules. Any module may have

substructure, that is, sub-modules contained within modules. Davis limits this down

to the gate level. In his paper, Davis used the examples in Figure 1 to describe the

terminology and hierarchy for his structure. The example LISP code in Listing 1

shows how the structure is built, and how the sub-modules are generated.

MODULES

A.........-

Figure 1 - Structure Terminology and Hierarchy (Davis, 1984:353,254)
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(definemodule adder NBitsWide
(repeat NBitsWide i

part slice-i adder-slice)
(run-wire (input-1 adder) (input-1 slice-i))
(run-wire (input-2 adder) (input-2 slice-i))
(run-wire (output slice-i) (sum adder))

(repeat (- NB.tsWlde I) a(run-wire (carry-au slice-i) (yarry-in slice-[i+p)
(run-wire (carry-out slice-[NBi sWide-l]) (sum adder)

Listing 1 - Example LISP code that describes structure. (Davis, 1984:354)

Behavior

Following interconnection of its components, a device is modelled as a

constraint network where each component's behavior is described bidirectionally. In

the forward direction (the normal operating mode), the component's output is

described as a function of its inputs. In the reverse direction, any input can be

described as a function of its output and other inputs. For example, the normal

(forward) operation of an adder could be described as:

Output = Inputl + Input2

In the reverse direction, the value of an input can be inferred from the output and

the other input as follows:

Inputl = Output - Input2
Input2 = Output - Inputl

In a constraint network, structure of the device is described by the connectivity

between the individual components. The output wire from one component is

connected to one or more inputs of other components. The behavior of each

component is described as discussed above.

To simulate the real-world device, the inputs are set and allowed to propagate

through all components to the output. These output values are compared to those

measured on the physical device, and if any are not the same, a problem has been
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detected and diagnosis is carried out to find the offending component. This is done

by taking the measured output values and injecting them into the outputs of the

model. These constraints are propagated backward through the model, and by

switching out selected components in turn (suspending the component), and

comparing the consistency-state of the model, a candidate list is generated.

Components selected for suspension are all those upstream from where the

discrepancy was detected. If several discrepancies are detected at the output, only

the intersection of upstream sets need be suspended. This can save considerable

computer time in complex systems.

The example circuit shown in Figure 2 was used by Davis (and several other

authors since) to describe his technique for candidate generation. His procedure is

detailed in Listing 2.

A--3 X-6

.............F=1 2 ExpectedB-3 --..........
F-10 Observed

C-2 - Y=6

D- 2-I G- = 2G=1

E=3 - iiii Z-6

Figure 2 - Troubleshooting Example. (Davis, 1984:362)
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STEP 1: Collect Discrepancies
1.1 Insert device inputs into the constraint network inputs

; e.g. insert 3, 3, 2, 2, and 3 at primary inputs A through E
; simulation predicts values at F and G

1.2 Compare predicted outputs with observed and collect discrepancies
; e.g., prediction and observation differ at F.

STEP 2: Determine Potential Candidates via Discrepancy Records
2.1 For each discrepancy found in step 1:

follow the dependency chain back from the predicted value
to find all components that contributed to that prediction
; these are all the components "upstream "of the discrepancy
; e.g., if we follow the dependency chain back from the 12
; at F we find adder-i, mult1, and mult-2

2.2 Take the intersection of all the sets found by Step 2.1
; this yields the components common to all discrepancies (and
; hence potentially able to account for all discrepancies)
; (in the example above there is only one discrepancy)

STEP 3: Determine Candidate Consistency via Constraint Suspension
3.1 For each component found in Step 2.2:

3.1.1 Turn off (suspend) the constraint modeling its behavior
3.1.2 Insert observed values at outputs of constraint network

; (inputs were inserted earlier at Step 1.1)
3.1.3 If the network reaches a consistent state

-The component is a globally consistent candidate
-its symptoms can be found at its ports
-add the candidate and its symptoms to the candidate list
; e.g., adder-1 and its values of 6, 6, and 10

otherwise
the candidate is not globally consistent, ignore it
; e.g., mult-2

3.1.4 Retract the values at constraint network outputs
3.1.5 Turn on the constraint turned off in step 3.1.1

; (these last two just get ready for the next
; iteration of 3.1)

Listing 2 - Candidate generation via constraint suspension. (Davis, 1984:365)

Hypothesis Generation

Given a list of candidates, it is now time to generate hypotheses for

component failures; these hypotheses will help eliminate most candidates. This is a

difficult task because of the conflict between the desire to be complete, and the need

for constraining the possibilities. Many assumptions are made for Davis's candidate
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generation algorithm. A single point of failure, and non-intermittency are

assumptions necessary for proper operation. However, other assumptions are not so

obvious. Assuming the schematic is correct is not always a good assumption to make

because there are paths of interaction between terminals that are not on the

schematic.

For example, if power is not supplied to a chip (because of a broken or bent

pin), an input wire can be pulled to ground resulting in an input terminal acting like

an output. If this were to happen to Mult-3 then the lower input to Mult-1 would be

zero. Another example is a bridge fault, where a solder splash shorts several pins or

tracks on a circuit board. This could not be modelled using the structure and

behavior methods already discussed, but can be taken into account with knowledge

of how the chips are physically located. Wiring errors during assembly or even design

errors are other problems that are usually assumed away because they don't exist on

the circuit. As Davis puts it: "... the virtue of the technique is that it reasons from

the schematic; the serious flaw in the technique is that it reasons from the schematic

and the schematic might be wrong" (Davis, 1984).

In the examples just given, i.e., the input acting as an output and the bridging

fault, it was assumed that no paths of causal interaction existed, yet pathways are a

fact. Davis does not consider such assumptions to be a problem, and states that

careful management of them are important to the reasoning process. Knowing how

the modules interact with each other, e.g., close proximity, capacitive coupling, heat

transfer, etc., it is possible to trace many paths of causality and come up with a wide

variety of hypotheses. This could quickly get out of hand, resulting in every module's

becoming a candidate, but if ignored some classes of faults may never detected.

Davis believes two steps can overcome this problem. First, it must be

recognized that knowledge of the pathways of interaction is the source of the

problem solving power and not the inference method (discrepancy detection and
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constraint suspension). Second, the pathways of interaction must be somehow

enumerated and organized so they can be used in the reasoning process.

How can interaction pathways be enumerated and organized for the reasoning

process? Davis found the answer from methods used by human troubleshooters.

Engineers know that some things go wrong more than others, so they employ simpler

hypotheses first. The hypotheses are ordered, starting with the simplest first, but

none is permanently excluded. Davis did this by enumerating the as:;umptions built

into the model and built a list of failure-categories by violating each assumption. The

order is fixed by the frequency of occurrence as reported by experienced

troubleshooters. The list is built only by experience and uses no causality knowledge.

For example, the order for the digital electronic domain is as follows:

- localized failure of function (e.g., stuck-at, failure of RAM cell)
- bridges
- unexpected direction (e.g., power failure problem)
- multiple point of failure
- intermittent error
- assembly error
- design error

The reasoning method uses the first assumption when generating the candidate

list. If this leads to a contradiction, then this assumption is relaxed and the next

assumption is used, i.e., that the problem may be a bridge fault. Davis believes that

this is what a good engineer would do: "..make all the assumptions necessary to

simplify a problem and make it tractable, but be prepared to discover that some of

those simplifications were incorrect" (Davis, 1984).

Limitations

In his paper, Davis listed a number of problems and limitations with the

technique. His examples used simple circuits to demonstrate the reasoning
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mechanism. Davis admitted problems when scaling to real systems, such as a disk

controller. He stated that the size of the system was not the main problem but that

modelling the complex behavior would present a more difficult problem. Difficulty

would arise deriving the inference rules used to infer the input of a component given

its outputs. How do you infer the inputs of a disk controller given its outputs. Many

devices are not invertible!

Another significant problem lies with modelling devices dependant on time

and have state. Modelling propagation delays would be necessary to detect race

conditions in digital circuits. Reasoning about protocols in communication systems

are also important. Another problem is reasoning about devices that have memory.

To overcome this, Davis hinted that future work could reason by moving back

through time, similar to his movement back through space (the circuit) from the

original discrepancy, to generate a candidate list.

Davis's work concentrated on digital circuits and he discusses additional

problems associated with the modelling of analog circuits. Most analog devices are

bi-directional. This makes cardidate generation less constrained because there are

more paths in the circuit resulting in many more components on the candidate list.

Another problem with analog circuits is that they often use feedback or hysteresis and

depend on a number of components to achieve a desired transfer function. A fault

with the feedback system is difficult to trace to a particular component because that

component will cause the whole feedback system to fail. Analog circuits also work

with continuous values rather than the simpler on/off values of digital circuits.

Qualitative physics has been used to try and overcome problems associated with

continuous values by giving them qualitative values such as high, ok, low, rising,

falling, etc.

Probing of the circuit was not used in Davis's work, but he did state that it is

an expensive operation compared to inference which is "free". He stated that it was
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expensive to put cards on extenders and that probing could disturb the circuit. For

the onboard satellite diagnoses problem, probing is not possible. Sensors are fixed

and so probing and its associated expense is not an issue.

Although Davis stated early in his paper that fault models were not required

in his method of troubleshooting, his categories of failure appear to be a similar list.

The categories of failure were needed to reduce the paths of interaction to be

considered, obviating the need for an exhaustive search. But Davis claims that

progress was made in two areas. First, by defining a fault as any discrepancy, he

could deal with a wider range of faults, and second, he provided a foi -,i way of

generating the candidate list. The fault models used in rule-based systems are

derived in an ad-hoc informal way that come from observations in practice. Davis's

failure categories are derived from assumptions underlying his representation, and

provide a relatively systematic basis for enumerating categories of failure to consider.

This brief review of Davis's work was intended to provide a background into

model-based reasoning and its problems for the review that follows

Scarl, Jamieson and Delaune(Scarl et al, 1985; Scarl et al, 1987)

Before Scarl's paper, most work using model-based reasoning for fault

detection was applied to electronic circuits. Scarl was one of the first to use it for

process monitoring and control applications. The detection of faults in a process

monitoring and control system is comparable to the detection (and correction) of

faults in an autonomous satellite system. Just as in a satellite system, a process

monitoring and control system has numerous sensors that report the health status of

the system at any given time. Both systems also have a set of commands that can

change the configuration of the system. If an anomaly is detected, a configuration

change can switch around a faulty component or switch-in a redundant one.
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Switching around a faulty component usually means living with a slightly degraded

system. Switching in a redundant component usually results in identical performance,

but at the expense of extra hardware; weight is an important aspect of satellite

design.

Scarl's work places emphasis on sensor validation. This was not the case with

Davis's work on electronic circuts. His sensors are test equipment (voltmeters,

ammeters, oscilloscopes, etc.) external to the device under test, and assumed to be

correct. The importance of sensor validation cannot be understated. As was

discussed in the last chapter, sensor validation was the nemesis of rule-based systems.

Just as in process control applications, sensor validation plays a critical role in

satellite fault detection.

Scarl's work (LES) applies model-based reasoning to the oxygen loading

system for the space shuttle. A brief overview of this system was given on page 18

in Chapter II. In this chapter the method he uses will be discussed. Specifically, the

knowledge representation he uses for the structure and function, and the algorithm

used for his diagnosis technique will be examined.

Structure and Function

The model of the oxygen loading system, represents all replaceable electro-

mechanical components and the relationships between them. Each object is modelled

using a version of the Frame Representation Language (FRL), which is similar to an

object oriented language. The frame includes slots (place-holders for variables or

methods) that describes the object's structure and function. Scarl uses SOURCE,

SOURCE-PATH, and STATUS to express how a component is controlled.

SOURCE points to the source of energy (e.g., a power bus or pressure line).

SOURCE-PATH is an expression with a boolean result that determines whether or

not the component is currently connected to its SOURCE. STATUS quantifies the
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object's state whenever SOURCE-PATH is on. Some example frame definitions are

shown in Listing 3.

(DEFRAME pot
(STATUS (CSTATUS valve)) ...)

(DEFRAME valve
(SOURCE-PATH (AND (NOT (CSTATUS override))

T ( S T AT US analog-command)

(DEFRAME closed-limit-switch
(SOURCE-PATH (COND ((< CSTATUS valve

~f(CSTATUS valve 10 IL)
...}M

Listing 3 - Example Frame Definitions (Scarl, 1987:362)

The first frame, representing a potentiometer, simply names the value. The

pot directly reflects a valves position and the CSTATUS is a macro returning the

valves expectation value. The second frame is for the valve, and its SOURCE-PATH

expression is true (valve open) if an override closed switch is OFF and the analog-

command is non-zero. The valve's STATUS is simply the analog command. The

third frame example is for the closed-limit-switch, which is a discrete device. The

COND expression says that this switch is expected to be ON whenever the valve is

less than four-percent open, OFF when the valve is more that ten-percent open, and

otherwise indeterminate.

It is a structural convention in Scarl's knowledge base that sensors control no

other objects. If this proves difficult, virtual sensors are created. For example,

ammeters or flowmeters are split into resistors or pipes with virtual attached sensors

that would be diagnosed as separate functional components.

Scarl defines his objects as the smallest replaceable units. This means he does

not descend to wire and bolt level description of components. This absence of

hierarchical structuring allows his system to ignore wires and connectors resulting in
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a compact representational scheme that suppresses unneeded detail. This

representation seems attractive for a satellite system.

Dofnitons

Scarl makes the following definitions:

" A system is the subject domain being represented.

" A network is a complex physical system of functional relationships.

" Consistent measurements give information about a system that agrees with

adjacent network components.

" Discrepant measurements give information about a system that does not agree with

adjacent network components.

" Commands are inputs to the network.

" Sensors are outputs from the network.

" The expectation value is determined by propagating commands through the

network. Expectation values are determined from information flow in the forward

(normal) direction (command to object).

" A hypothetical value is determined by treating a measurement as a constraint and

describing what some object's state is implied to be by observation. Hypothetical

values are derived from a reverse direction (sensor to object).

" An innocent object in incapable of being the cause of a given sensor discrepancy.

" A culprit is demonstrably the cause of a given sensor discrepancy.

" A suspect may be the cause of a given sensor discrepancy.

" The original discrepancy (OD) is the first discrepancy to be noticed.

* Siblings of a given sensor are those other sensors that depend in any way upon any

of the commands controlling that sensor.
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Full Consistency Algorithm

Before examination of Scarl's Full Consistency Algorithm, his assumptions are

listed as follows:

Assumptions.

* The domain's structure and its internal functional relationships are known. These

may change since faults can be considered as changes in the system's structure or

function, but the functional relationships must be known at any time within some

specified tolerance.

* Only single points of failure will occur in an operational system. This says that the

time between failures is long compared to diagnosis time.

* Sensor-based diagnosis is adequate. This says that behaviors lasting longer than

the sensor polling cycle are handled, while shorter-lasting behaviors can be

ignored. It also says that the system has sufficient sensors to make important

discriminations so that the residual sets of suspects are acceptably small.

Limitations.

* The current implementation cannot handle feedback.

• Only single output objects can be used.

* Bridge or directional faults are not supported.

Scarl's algorithm is essentially a search for some fault that can explain what

the sensors are showing. As can be seen in the algorithm shown in Listing 4, all

components and all sensors are not tested. Only those objects structurally upstream

from the OD need to be tested. But all those sensors downstream from thc OD are

not a sufficient set for correct diagnosis. All sensors that are in any way dependent

on the suspects OD should be tested, i.e., the OD's sibling sensors.
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Following detection of a sensor discrepancy:

1. Pick some object, structurally upstream from the OD and label it as a suspect.

2. Hythesize some faulty state for the suspect. Since the suspect's model can say
wat its properly working state is, any other conceivable state could be chosen.

3. Given this hypothesis, the model is used to derive expectation values for the
system's sensors.

4. These sensor's measurements are then tested for consistency with those
expectation values.

a. If all sensors are consistent with their expectation values, then the
hypothesized fault is one possible explanation of sensed observations,
and the suspect is retained.

b. If any sensor reading is not consistent with its expectation value, then
that hypothetical fault (just the fault, not the suspect) is ruled out.

5. If Case 4.b. applies, then continue from Step 2 with that same suspect and
repeat for all possible fault hypotheses. If alf its possible faults are ruled out,
then the suspect is cleared.

Listing 4 - Scarl's Full Consistency Algorithm (Scarl, 1987:364)

This algorithm works equally well when a sensor is included in the suspect list.

The suspect may the OD sensor itself. The structural convention that the sensor

controls no other object implies that (a) there is always one and only one sensor

among the suspects (the OD itself) and that (b) the sensor is cleared if any siblings

has a discrepant reading. This makes sensor diagnosis very much more efficient than

in other systems, such as forward chaining systems.

Diagnosis time depends on the number of suspects and siblings, which in turn

depend on the depth and branching factor of the control lattice (not the size of the

knowledge base).
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More Recent Work in Model-based Reasoning

The rest of this chapter very briefly discusses more recent work in model-

based reasoning and is included here only as a point of reference.

De Aleer and Williams(de Kleer and Williams, 1987)

De Kleer and Williams built on the work of Davis, but are able to diagnose

multiple faults in a digital circuit. Constraint propagation is coupled with an

Assumption-based Truth Maintenance System (ATMS) for managing different

diagnostic hypotheses. Their paper describes the General Diagnostic Engine (GDE),

and their research delves into:

* Minimal sets

* Exploiting the iterative nature of diagnosis.

* Separating diagnosis and behavior prediction using a domain independent

diagnostic procedure.

* Combining of model-based prediction with sequential diagnosis to propose

measurements for fault localization.

* Use of probabilities and information theory in their diagnosis.

The main problem with their system is that it generates many alternatives; it

is combinatorially explosive! This is largely overcome by using fault models,

discussed in a later paper by De Kleer and Williams.

Strus and Drm/er(Struss and Dressier, 1989)

Struss and Dressier recognized that the techniques used by de Kleer and

Williams often generated candidates that could not possibly have caused the fault.

This is because de Kleer and Williams's General Diagnostic Engine (GDE) captures

only the correct, or intended, behavior of its components and does not have any
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knowledge about how components behave when they are faulty. Struss and Dressier

enhance GDE to GDE+ by incorporating fault models to help rule out any

implausible diagnostic hypotheses and prove the correctness of components.

The whole advantage to model-based reasoning however, is that knowledge

about the way a component fails is not required. After all, wasn't that the downfall

of rule-based expert systems and causal nets? That's true, but those methods of

fault diagnosis did not use model-based reasoning in the first instance. Once the

model-based reasoning mechanism provides the candidate list (which is large for

GDE since it can handle multiple faults), knowledge about the faulty behavior of

components is exploited to cut down the size of the candidate list.

In their paper, Struss and Dressler provide a very good example to demon-

strate GDE's lack of knowledge of component faulty behavior. They use a battery

and three light bulbs connected as shown in Figure 3. The battery, S, is connected

S

W1 W2

BWW3 T W4

B2
W5 W6

B3
Figure 3 - Struss' light bulb example. (Struss and Dressier, 1989:1318)

to three bulbs, B1, B2, and B3, of the same type. Suppose it is observed that B3 is

lit. Without requiring further measurements, a plausible diagnosis is that B1 and B2
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are broken. This is because B3 indicates that battery is ok. GDE would suggest a

variety of diagnoses. Among them is the preferred diagnosis of B1 and B2, but it will

also show S and B3, W1 and W5 and many others. The diagnosis S and B3 explains

the observations by a fault in the battery and the light bulb B3; "The battery does not

supply voltage that is why B1 and B2 are not lit) and B3 is faulted: it is lit although

there is no voltage"! This is of course is a ridiculous situation, and the explanation

would not be accepted, because, unlike GDE, we use not only knowledge about the

correct behavior of the involved components, but also knowledge about their possible

behavior when they are faulted. For example, being lit without a voltage supply is

not a potential fault of a light bulb.

This example demonstrates that knowledge about the faulty behavior can be

very important. In many cases, the diagnostic process involves both

* generating candidates, or diagnostic hypotheses, by identifying sets of

components whose correct functioning contradicts the observations, and

* generating explanations, or confirming diagnoses, by analyzing whether the

malfunctioning of a (set of) components(s) is consistent with the observations.

Thomas Adams(Adams, 1986)

Adams's 1986 paper describes a practical application of model-based reasoning

for automated fault diagnosis and load management for a spacecraft electrical power

system. Adams describes a domain-independent inference engine that diagnoses

faults using a constraint propagation mechanism. Similar to Davis's work, the

diagnostic procedure consists of establishing consistency between the predictions of

the constraint network and the observed data. The paper also discusses recovery

planning and its effects on diagnostic activity.
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A spacecraft power system consists mostly of analog components; the

knowledge describing the behavior of the components and the interaction of

interconnected components is expressed as constraint relationships. The components

are modelled using current-voltage relationships (Ohms Law) and their

interconnections using Kirchoff's nodal current law. Nonlinear models are treated

similarly but use piecewise-linear models instead.

James Skinner (Skinner, 1988)

Skinner's thesis describes a blended diagnostic system which combines shallow

(rules) and deep (models) reasoning to diagnose faults in a submarine inertial

navigation system. Skinner's deep reasoning relies mainly on connectivity of

components and not their function, and so is limited in its reasoning capability.

Raymond Yost (Yost, 1989)

Yost's thesis applies Davis's techniques to the same Inertial Navigation System

used by Skinner, and thus overcomes some of Skinner's limitations. He used AI

Squared Inc's Intelligent Diagnostic Expert Assistant (IDEA) tool to model the INS

system because it was an implentation of Davis's work. But in his thesis, Yost stated

the following limitations with this system:

Difficulty with Feedback Loops. Like Skinner, Yost had difficulty modelling

circuits that had feedback loops. The version of IDEA he used did not help in this

regard. He overcame the problem by modifying the representation of the circuit, but

in doing so, he lost the structure of the real system.

Lack of lierarchial Strategy. Again, Yost was constrained by the IDEA

model-based reasoning tool. This tool did not allow different levels of abstraction -

the way a technician works to break down a problem.
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No Heuristic Reasoning Ability. Yost found numerous instances where simple

heuristics could have pruned out the problem space before resorting to a more

detailed diagnosis using a model. His model-based prototype, and the IDEA tool had

no provision for heuristic reasoning ability. He recommended that any future model-

based tool should include some rule-based capability.

Chen and Sargur (Chen, 1989)

Model-based fault diagnosis generates a list of candidates that are potential

causes of the fault. Chen's paper provides a method for looking at the most likely

candidate first in order to cut down on the computation required if every candidate

were looked at exhaustively.

Ga/lanti (Gallanti, 1989)

Gallanti claims that application of model-based reasoning to real-world

problems is still poor. His method make it practical for diagnostic problem solving

in automated systems for monitoring continuous processes (Applicable to spacecraft).

His system uses different levels of abstraction. Qualitative causal models (e.g.,

hi/low/ok etc) are used for candidate generation and quantitative models (real values)

are used for validation or rejection of candidates.

Dvorak (Dvorak, 1989)

Dvorak's paper is on fault diagnosis of continuous-variable dynamic systems

(CVDS). His method describes diagnoses of CVDSs where values are continuous

(not discrete) and constantly changing, relatively few parameters are observable, and

diagnosis is performed while the system operates. The method exploits the system's

dynamic behavior using qualitative and quantitative models. Diagnostic knowledge

is produced by qualitative simulation, continuously comparing observations against
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fault-model predictions, and incrementally creating and testing multiple-fault

hypotheses. The diagnosis is refined as the physical system's dynamic behavior is

revealed over time.

Summary

This chapter has examined model-based reasoning techniques presented by

many authors. Davis's and Scar's work was discussed in some detail. Davis's work

was examined because it provided a good basis for the understanding of the model-

based reasoning paradigm. His work was applied to electronic circuits that could

easily be probed for more data, so it really is not directly suitable for remote systems

such as a satellite. Scarl's work was examined in detail because it was applied to a

process control system. A satellite is similar to a process control system because it

has many (fixed) sensors and further probing is not usually possible. Davis's and

Scarl's methods have their limitations. In particular, limitation with feedback systems

and systems that have state, or are otherwise time dependent. Many Al researchers

are working in the area of model-based reasoning in an effort to overcome some of

these limitations. A brief descriptior of some of their work has also been presented.

Appendix M lists a summary of research papers, in chronological order, of work done

in the field of model-based reasoning.
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IV. Satellite Subsystem

Introduction

The aim of this chapter is to present an overview of a major satellite

subsystem and to give a more detailed look at a part of that subsystem that may used

by a model-based reasoning fault detection system. The subsystem chosen was the

Attitude and Velocity Control Subsystem (AVCS) of a typical geo-stationary

communications satellite. Because of complexity and thesis-time constraints, only the

pitch control channel of the AVCS is modelled and described in detail. However, an

overview of the AVCS will be given to put the pitch control channel into perspective

and to give the reader an understanding of how it fits in with the rest of the AVCS

subsystem.

Information for this chapter was taken from an Orbital Operations Handbook

(OOH) of a communications satellite. Although the orbital handbook provides a

great quantity of detail, the information obtained is only used in a generic way. The

handbook provided guidance on how such a subsystem operates and how it is

implemented in a real spacecraft. Most importantly, the handbook provided realistic

values for such things as pitch and roll error angles, control voltages, wheel speed,

and their tolerances. These values were important in the model-building process to

ensure the design of a realistic model.

General Description of Satellite

The spacecraft is a communications satellite operating in geo-stationary orbit.

Like most communications satellites, this satellite is controlled from the ground by

commands sent over a telemetry link. Satellite status is sent to ground controllers

from onboard sensors via the telemetry link. If anomalies are detected, and the
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problem proves to be a faulty module, controllers can switch to a redundant module

within the subsystem to circumvent the problem. To ensure long-term (five years)

reliability, the satellite has two of almost everything. The "A' module is the primary

and the "B" module is the redundant backup. Primary or redundant modules are

selected from decoded commands that activate relays to connect or remove power

from the modules.

Attitude & Velocity Control Subsystem (AVCS)

AVCS General Description

Following successful insertion of the satellite into the correct position of the

geo-stationary orbit, the primary function of the attitude and velocity control

subsystem (AVCS) is to keep the satellite's antennas pointing at the earth's center

(nadir), and the solar panels pointing at the sun. The AVCS carries out many

functions, especially before orbit insertion. The AVCS provides for attitude error

sensing, data storage, sigr.al processing, mode switching, verification of commands,

and control of actuation devices. It operates in a spin-stabilized mode during the

transfer orbit; it provides for spin speed adjustment, despin, and sun/earth acquisition

control; and it operates in a three axis on-orbit control mode. This thesis is oniy

concerned with the on-orbit "normal mode" of operation of the AVCS. Accurate

three-axis pointing is achieved using a small body-fixed momentum wheel biased at

3000 rpm, in conjunc-.ion with low level (0.1 pound) hydrazine thrusters and an earth

sensor utilizing only roll and pitch attitude sensing. The AVCS also provides for

ground-commanded orbital velocity changes while in a three-axis thruster control

mode. The orbital velocity changes are required for "station-keeping", that is,

keeping the satellite in the correct position, both in latitude and longitude, in the geo-

stationary orbit. This is required because the satellite moves out of its correct

44



position due to perturbations such as non-constant gravity field, solar wind,

meteorites, and on-board movement (solar arrays).

The overall block diagram of the AVCS is shown at Figure 4. The figure

shows the eight different assemblies associated with the subsystem. On the left of the

diagram are the sensor assemblies, consisting of the earth sensor, the sun sensor

EART CONTROL ELECTONICS AUXIUARY ELECTRONICS REACTION
SENSOR ASSEMBLY ASSEMBLY ONTROL
ASSEMBLY SYSTEM

Earth sensor prooessng Valve Drive

Command storage Power SwdIng SOLAR

Wheel con Atude rocessgASSEMBLY 1
SUN ThnW o Telemey pocessg

SENSORAc*Wdo oorftSolar array &W OLAYDP

ASSEMBLY_________ Whe ASSEMBLY

REACTION
SPINNING WHEEL
EARTH SENSOR ASSEMBLY

ASSEMBLY

Figure 4 - AVCS Overall Block Diagram (Orbital Handbook: 3.2-5)

(including spinning and non-spinning detectors) and the spinning earth sensor (used

for transfer orbit attitude determination). The two electronics assemblies, at the

center of the diagram, process data from the sensors and carry out other functions

as shown. The Control Electronics Assembly implements control laws through the

various mission phases to cause the spacecraft to acquire the sun, to acquire the

earth, to maintain earth-sun pointing, and to maintain pointing for normal on-orbit

operations. The Auxiliary Electronics Assembly is the interface between the control

electronics and other spacecraft systems; it primarily drives the actuators shown as

the four boxes on the right of Figure 4. Note that the Reaction Control System

(hydrazine thrusters), shown as a dashed box in the Figure, is not a part of the
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AVCS; however, the drive electronics, that operate the thruster valves in the reaction

control system, is part of the AVCS.

Coordinate System

A satellite's coordinate system is similar to that of an aircraft. Just as the belly

of an aircraft points to the ground, the directional antenna of a communication

satellite points to the ground. This line, to the center of the earth, is the positive Z-

axis. Clockwise rotation around this axis, looking in the positive direction of the axis

(towards the earth) is positive yaw, and is denoted as +Z or +Y. The satellite's

direction of motion (the velocity vector) is the positive X-axis, and clockwise rotation

-V

X

+ Pih sun A

To SoU Celestal Pole

Figure 5 - Basic Coordinate System

around this axis is positive roll, denoted by +R. The axis perpendicular to the X-axis

and Z-axis is the Y-axis. For a geo-stationary satellite, the Y-axis is parallel to the

earth's rotation axis, and its positive direction points to the south celestial pole.
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Clockwise rotation about the Y-axis is positive pitch, and is denoted as +P. The

solar-panels are rotated about the Y-axis to ensure that the panels remain facing the

sun during the satellite's 24 hour journey around the earth. The coordinate system

is illustrated in Figure 5.

Reaction Control System

Attitude is controlled by hydrazine-fuel thrusters, strategically mounted (in

pairs for redundancy) on the spacecraft to provide torques to rotate the craft about

any desired axis. Placement of the thrusters on the spacecraft is illustrated in

Figure 6. The satellite has two pairs of 1.0 pound thrusters for pitch (+P and -P),

two pairs of 1.0 pound thrusters for roll (+R and -R), and four pairs of 1.0 pound

thrusters for yaw (-Z1, +Z2, -Z3, & +Z4). To cause the satellite to spin (as is done

in the transfer orbit) in the positive yaw direction, +Z2 and +Z4 would be fired. To

stop spinning, the -Z1 and -Z3 would be fired. For velocity changes (as required for

station-keeping), -Z1 and +Z2 would be fired to increase velocity in the X direction,

and -Z3 and +Z4 would be fired to decrease velocity in the X direction.

The 1.0 pound thrusters are used for orbit insertion, for velocity changes, and

for momentum wheel unloading. When the satellite is in normal on-orbit mode,

these thrusters are disabled and 0.1 pound thrusters are used for roll and yaw

stabilization (-RY and +RY). Pitch is controlled by a momentum wheel (of which

there are two, for redundancy). The momentum vector points down the negative Y-

axis, i.e., the wheel axis is in-line with the Y-axis and the wheel spins anti-clockwise

when looking down the positive Y-axis (negative pitch rotation). Accelerating the

wheel generates a positive pitch torque, conversely, decelerating the wheel generates

a torque in the negative pitch direction. Figure 6 also shows the orientation of the

momentum wheels on the spacecraft.
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Figure 6 - RCS thruster and wheel locations (OOH:3.2-13)

AVCS Modes

The AVCS has to accomplish many operations before normal on-orbit mode

is in effect. The satellite goes through seven distinct attitude modes from launch to

its normal on-orbit operation. These modes, and the operations performed during

each, are summarized in Table 1. Each mode represents a different hardware

configuration that is manually selected by commands from the ground. An exception

is the switch from mode 3B to 4A. This is an aLomatc mode change. This thesis

is only concerned with mode 4B, the Normal mode.

Mode 4B - Normal Mode

The spacecraft operates in the Normal mode most of its mission life. The

following functions are carried out during the Normal mode of operation:

* Normal control initialization (reaction wheel and 0.1 lb thrusters)

* Continuous monitoring of spacecraft state-of-health

* Payload configuration
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Table 1

AVCS Modes (OOH 3.2-28)

Mode Name Operation
No.

1 Launch/Spin-up * Spacecraft spin-up about Z-axis

2A Coast 0 Spin speed adjust
* Spin axis attitude determination
* Spacecraft precession

2B Despin * Despin of spacecraft
* Solar array reorientation

3A Sun Acquisition 0 Point X axis (plus or minus) at sun

3B Earth Search/Acquisition * Adjust roll rate
* Search for earth and automatically

switch to Mode 4A

4A Sun/Earth Point 0 3-axis stabilize on earth using sun for
yaw control

* Perform orbit velocity change

4B Normal 0 3-axis stabilize on earth using reaction
wheel and roll/yaw thrusters

* Battery reconditioning

* Switching earth sensors (north and south)

* Adjustment of solar arrays

* Reaction wheel momentum unloading

To attain the design goal of a five year mission life-span, attitude pointing is

accomplished with minimum propellant usage. Low propellant usage is realized by

using a reaction wheel for pitch stabilization and by using low-level (0.1 pound)

thrusters for roll (and some yaw) stabilization.

Pitch. The pitch error signal, coming from the earth sensor, controls the

speed of a biassed (rotating at some nominal rpm) reaction wheel. An increase or
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decrease in wheel speed depends on the polarity of the pitch error signal. Since the

wheel axis is along the Y-axis, this results in a pitch torque on the spacecraft.

Rol and Yaw. The roll error signal drives the low-level roll thrusters which

are tilted to provide a small component of yaw torque. These R/Y thrusters not only

provide roll torque, but, in conjunction with the momentum vector of the biased reac-

tion wheel, will provide damping so that the X- axis is maintained in the orbit plane

as the spacecraft moves around the orbit. This obviates the requirement for

continuous use of a yaw sensor.

A pictorial representation of the AVCS operation in the 4B-Normal mode is

illustrated in Figure 7. AVCS hardware configuration for the pitch and roll/yaw

channels for the 4B-Normal mode is shown in Figure 8.

Y

Figure 7 - Mode 4B - Normal Mode (OOH:3.2-35)
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PITCH CHANNEL

ROLLJYAW CHANNEL

Figure 8 - AVCS Normal Mode - Electronics Configuration (OOH:3.2-35)

On-Orbit Pitch Control Channel

As Figure 8 illustrates, the pitch control channel is composed of five modules:

the Earth Sensor Assembly (ESA), the Earth Processing Electronics (EPE), the

Wheel Control Electronics (WCE), the Wheel Drive Electronics (WDE) and the

Reaction Wheel Assembly (RWA). Since these will be modelled in the model-based

reasoning software, the operation of each will be discussed in detail. However,

before this is done, it is useful to look at the pitch control channel as a whole- its,

inputs, its outputs, and its function. A block diagram of the pitch control channel,

showing cross strapping for redundant operation, inputs (commands) and outputs

(sensors) is illustrated in Figure 9.

Inputs

Inputs to the pitch control channel come from two places. First, sensors

provide the pitch error offset angle that is detected using the mirror scanning

mechanics and electronics in the earth sensor assembly (ESA). Second, decoded

ground commands select options or different configurations in the pitch control

51

..... .....
.. . .... .... .. .. . ....

...... .....
. . . . . . . .



777h_
V11'

~ IijJI

Figue 9- PtchConrol hanel Comans, Snsos ad Rdunanc

52E



channel. These commands are important because after a faulty module is detected

by the model-based reasoning software, these commands can be issued to correct for

an anomalous situation. This is exactly what is done by ground personnel. A

summary of all the commands that affect the pitch control channel is listed below:

* Power Switching Commands. These commands connect and disconnect power to

primary and redundant modules when required.

* Sensor Selection Commands. These commands select one of four earth scanning

beams in the earth sensor assembly. The A and the B earth sensor each produce

a north and south beam, and both sensors are always active.

* Normal Mode Selection Command. This command puts the AVCS into the mode

4B configuration. The 1.0 pound thrusters valves are disabled and the 0.1 pound

RY thrusters valves and reaction wheel are enabled. In addition, this command

also inhibits WHEEL CAGE.

* Normal Mode Disable Command. This command disables the previous command

function.

" Wheel Unload Normal Command. This command enables the wheel unload

output in the wheel control electronics (WCE) so that pulses can be sent to the

+P valve drivers (1.0 pound pitch thrusters) to effect an unloading of the wheel

momentum. This is periodically required to keep the wheel biassed at its nominal

speed (3000 rpm).

" Wheel Unload Inhibit Command. This command inhibits the wheel unload

normal command.

* Earth Presence Override Command. This command overridcs the earth presence

signal from the selected earth sensor scan so that presence is always indicated.

This command drives the wheel drive logic as an earth presence signal.
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* Earth Presence Normal Command. This command disables the previous

command function.

" Wheel Cage Command. This command disconnects the wheel from the control

loop and forces it to be driven to, and held at, its nominal rpm.

" Wheel Normal Command. This command puts the wheel back into the pitch

control loop.

Outputs

Outputs from the pitch control channel also come in two forms. First, an

important output is the torque that moves the spacecraft in pitch attitude. This is

done by speeding up or slowing down the momentum wheel. Second there are many

outputs that come from sensors throughout the pitch control channel. These outputs

are telemetered to the ground, and monitored for spacecraft health status. These

sensor outputs are important because they can be used by the model-based reasoning

software to help determine which module is the culprit if an anomaly is detected in

the pitch control channel. This is exactly what is done manually by ground control

personnel. A summary of all the sensor outputs that affect the pitch control channel

is listed below:

* Radiance Present. The following outputs indicate if earth radiance exists

anywhere in the beam. Output is bilevel where 1 = Present, 0 = Not Present.

- ERAD Radiance Present. Indicates if earth radiance is detected in any of the

Earth Sensor Assembly's (ESA) four scans.

- ES1RADN Earth Radiance Present. Indicates if earth radiance is present in

ESA(A) north scan.

- ESIRADS Earth Radiance Present. Indicates if earth radiance is present in

ESA(A) south scan.
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- ES2RADN Earth Radiance Present. Indicates if earth radiance is present in

ESA(B) north scan.

- ES2RADS Earth Radiance Present. Indicates if earth radiance is present in

ESA(B) south scan.

* Earth Present. The following outputs indicate only if a scan has completely

crossed the earth. Output is bilevel where 1 = Present, 0 = Not Present.

- ESIEPN Earth Present. Indicates that ESA(A) north scan has crossed earth.

- ES1EPS Earth Present. Indicates that ESA(A) south scan has crossed earth.

- ES2EPN Earth Present. Indicates that ESA(B) north scan has crossed earth.

- ES2EPS Earth Present. Indicates that ESA(B) south scan has crossed earth.

* Pitch Angle. Except where stated, the following pitch error angles from the ESA

are telemetered as 8-bit two's complement numbers. The pitch range is ±t5.12.

- PES1N Pitch Angle. Pitch angle from ESA(A) north scan.

- PESIS Pitch Angle. Pitch angle from ESA(A) south scan.

PES2N Pitch Angle. Pitch angle from ESA(B) north scan.

- PES2N Pitch Angle. Pitch angle from ESA(B) south scan.

- EPITCH Pitch Angle. Pitch angle from selected ESA scan. This is an analog

signal with a range of -+5.10 @ 2.008°/v.

* Wheel Outputs. The following sensor outputs relate to the reaction wheels.

- WHL1V Wheel Voltage - 1. Voltage for Phase 1 of reaction wheel two-phase

motor. Range 0 - 25 VAC.

- WHL2V Wheel Voltage - 2. Voltage for Phase 2 of reaction wheel two-phase

motor. Range 0 - 25 VAC.

- WHLI Wheel Current. Reaction wheel motor current. Range: 0 - 7.2 Amps.

55



- WEiLDIF Dif Wheel Speed. Wheel speed deviation from 3000 rpm.

Range: t612 rpm.

- WULCON Reaction Wheel Control. Control signal to RWA motor elec-

tronics. Value dependent on whether wheel is caged or not. Range: Uncaged

+_0.77, Caged: ±-153 rpm.

- WHLT Reaction Wheel Temperature. Temperature of the reaction wheel

hearing. Range: -10' to + 1400 F.

Functional Description

A functional block diagram of the pitch control channel is illustrated in

Figure 10, and pitch wheel controller characteristics are listed in Table 2.

WHEEL LOSS OF
NORMAL EARTHEarth 1 1- *+ +_PR CEMor Reactionw,,e, I

WHEEL PRE

+Reference

WHEEL 3000 rpm

ITo Thruster

LI 1,2 stoSelect Logic

Figure 10 - Functional Diagram of Pitch Control Channel (OOH:3.2-101)

Normal Loop Operation. Pitch error voltage from the earth sensor is fed

into a lead/double-lag compensator and an integrator circuit before being summed

and sent to the motor drive electronics. The lead/double lag compensation derives

rate for stability. The integrator prevents a constant error by providing the steady
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state signal required to maintain motor torque equal to the wheel drag torque. If the

drive torque were not compensated, there would be a constant attitude error

equivalent to the wheel drag torque. Voltage proportional to the compensated signal

drives both windings of the wheel motor, with the developed motor torque

approximately proportional to the square of the compensated signal.

Table 2

Pitch Wheel Controller Characteristics (OOH:3.2-102)

Description -_Characteristic

Maximum Motor Torque, Nominal (in-oz) 19

Wheel Drag Torque Range (in-oz) 0.6 to 2.5

Pitch Axis Moment of Inertia (slug-ft2) 640

Pitch Attitude Error (deg) < 0.05

Wheel Control Stability Margin:
Gain (dB) > 10
Phase (deg) > 30

Momentuni Removed per Unloading Sequence (ft-lb-sec) 0.35

Wheel Momentum Unloading Interval (days) > 8

Wheel Momentum Unloading. During the wheel unload mode, the wheel

speed is maintained within ± 10 percent of 3000 rpm by comparison of the speed

error with the 3000 rpm reference, and firing a pitch thruster when the threshold is

exceeded. Pitch thruster firings are pulses of 0.05 second duration. These firings

turn the spacecraft (about 0.25 deg/firing) and the resulting error is sensed and

removed by the reaction wheel control, thereby adjusting the wheel speed. There is

a 1000 second delay between pitch firings to ensure that the pitch signal is fully

decayed before another firing. Under normal on-orbit operation, the wheel speed
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is monitored and wheel unloading is accomplished manually. This manual unloading

occurs approximately once every 20 days.

Wheel Run-up. On module power-up (WCE and WDE ON), wheel run-up

is provided by the tachometer feedback when in the WHEEL CAGE ENABLE and

EARTH PRESENCE OVERRIDE mode. With earth presence, the wheel will run-

up because the tachometer loop is dominant over the attitude signal. When a speed

of 3000 rpm is reached, the tachometer loop ceases to control the wheel and the

attitude then commands the wheel to maintain null earth sensor pitch signals.

Wheel Cage. When WHEEL CAGE is enabled, the cage loop maintains the

wheel speed at near 3000 rpm. This caged mode is used for velocity correction

maneuvers and to run up the wheel without earth presence with earth presence

override enabled. Normally the reaction wheel motor will be automatically disabled

upon loss of earth presence.

Earth Sensor Assembly

The earth sensor assembly (ESA) uses an infrared detector to provide pitch

and roll pointing data to the attitude control subsystem. Each ESA consists of a

dual-scan sensor head subassembly and an electronics subassembly. The ESA heads

are mounted on an accurately aligned pedestal structure. Each ESA head contains

a scan mechanism and two infrared telescopes to provide two parallel scans, offset

t5 degrees from the sensor boresight axis which is aligned with the spacecraft Z-axis.

The scanning mechanism rotates a mirror to provide an optical scan length of ± 12.5

degrees. The mirror uses an optical incremental encoder to provide two outputs of

angular readout. The first is a sequence of pulses, with pulses at equal angular incre-

ments, and the second is a reference pulse that occurs at the center of scan motion.
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As illustrated in Figure 11, angle data from the encoder and the radiance data

from the infrared detectors are fed into a computational logic circuit to produces

pitch and roll error signals (10 bit serial data), and radiance and earth presence

IR adiance Norh __

Detector Circuits Scan
R.&IW PMe

1JError E&hP
-- z Lens/Filter Computation. ,Logic M

Radiance IR [_Radiance Logic C l__d_

Readouit

Circuits

Figure 11 - ESA Simplified Block Diagram (OOH:3.2-139

signals (bilevel). Although the ESA produces 10 bit serial data for pitch and roll

error signals for the earth processing electronics, only 8 bit data (7 bit and sign) is

telemetered. Each computation logic block outputs a Data Ready signal, and

receives as input a clock signal, for clocking out the serial data. The pitch scale

factor is .010°/count and the roll scale factor is 0.0071°/count. With a count of ±512

for the 10 bit word, the pitch range is therefore ±_5.12 degrees.

As shown in Figure 12, the earth disk is scanned by two parallel scans, and

each has a length of 25 degrees. From geo-stationary orbit, the earth diameter

subtends an angle of about 17 degrees. With the Z-axis pointing at the center of the

earth (perfect pointing), each beam receives radiance that subtends an angle of 14.7
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Figure 12 - Earth Scanning Beams

degrees across the earth disk. About five degrees of the scan overshoots each side

of the earth disk. Perfect earth pointing scans are shown in Figure 12(a). Note that

each scanning beam provides an independent measure of pitch and roll attitude

error; the beams do not work together. The pitch error attitude is determined by the

comparative lengths of the scanned half chords of the earth disk about an internal

reference (Figure 12(b)). The roll attitude is determined by the total scanned chord

length and compared against the length of the 14.7 degree reference chord

(Figure 12(c)).

Earth Processing Electronics

The primary function of the Earth Processing Electronics (EPE) is to accept

the pitch and roll error signals from the Earth Sensor Assembly (ESA) and convert

the 10 bit digital words to analog form. The analog voltages are used to drive control

circuits that correct the attitude of the spacecraft. The EPE provides the following

four functions:
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" Provide data-read clocks to the earth sensor in response to a data ready pulse.

* Select a specific earth sensor channel output in response to command inputs.

* Provide digital to analog conversion of the data.

* Provide sequential telemetry readout of all earth sensor data.

A simplified block diagram of the EPE is illustrated in Figure 13. The telemetry

function plays no part in the functional operation of the pitch control channel and

will not be further discussed.

Data Ready

Clock of ESA Telemetry
Generator Dim Multplexer Data B Out

ShlotClos

"Telemetr
Word Address

Commands

Dat inputs
AN Data DgtltAS Selector Digital toag ESAerror
BN and Analog
BS Compl. Converter

Figure 13 - EPE Simplified Block Diagram

Clock Generator. The clock generator circuit receives the asynchronous data

read pulses from the ESA and responds with ten 9.6kHz data shift clock pulses.

Although derived from the same phase of the dual phase master clock, two

independent circuits are used to generate the shift clocks for the A and B ESAs. The

second phase of the master clock is used in the rest of the EPE to carry out other

timing functions.
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Data Selection and Complementer. The data selection circuit uses a 4-line to

1-line multiplexer to select the required ESA scan. The required scan is determined

by decoded select commands, telemetered from the ground. The circuit complements

the pitch data from the north and south scan of the A ESA, and the roll data from

the north scan of both ESAs. Complementing the data bits effectively reverses the

polarity of the voltage from the digital to analog converter. The A and B sensor

assemblies are physically mounted 180 degrees apart, and scan in opposite directions.

Complementing is therefore necessary to ensure that the reaction control system

applies the correct direction of torque to move the spacecraft to null the attitude

error.

Digital to Analog Conversion. The digital to analog converter (DAC) receives

the 10 bit serial bit stream from the data selector, stores it in a 10 bit receiving

register, and converts the number to an analog voltage between -5 and + 5 volts. The

shift clock from the clock generator is used to shift the 10 bits into the receive

register. A 6.4 volt reference voltage ensures that the digital to analog converter

operates about a bias voltage of zero volts. An output buffer amplifier converts the

digital to analog current output to a voltage with a scale factor of 9.77 mV per count.

Another input to the DAC is the "zero register" signal. This signal forces all zeros

into the 10 bit register when earth presence is lost, and prevents possible erroneous

roll and pitch data forcing an unwanted attitude change. With an input scaling factor

of 0.01°/count from the ESA, and the DAC output scaling factor of 9.77 mV per

count, the voltage change per degree of pitch error angle is (9.77mV/cnt)/(0.01°/cnt),

or 0.977 volts/degree. The transfer function could be expressed conversely as 1.024

degrees/volt.
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Wheel Control Electronics

The main function of the Wheel Control Electronics (WCE) is to accept the

analog earth sensor pitch error signals from the EPE, apply loop compensation and

generate a wheel control voltage that is applied to the Wheel Drive Electronics

(WDE) to control the speed of the reaction wheel. The WCE provides the following

functions:

* Process the earth sensor pitch error signals and develop a wheel speed control

voltage.

* Provide a "wheel cage" mode in which a tachometer pulse train is used to

generate a wheel control voltage to drive the wheel speed to 3000 rpm.

" Provide wheel speed threshold detectors which cause thruster firing commands to

be sent to the thruster valve drivers when the wheel speed is above or below set

speed limits (wheel unloading).

The wheel cage and the wheel unloading play no part in the operation of the pitch

control loop and will not be further discussed.

The function of the WCE is very important to the proper operation of the pitch

control looj -nd has already been briefly discussed under Normal Loop Operation

on page 56. Any closed-loop control system requires a filter that provides the correct

damping on the system. If the filters were not correctly designed, the system could

be underdamped or overdamped. Underdamping causes the system to overshoot the

desired state, and in correcting for this, to overshoot again. It is hoped that the

overshoot will become smaller with each excursion and the system will eventually

reach its desired state. However, this can take an excessively long time. If the

excursions do not become smaller, the system is unstable and continues to oscillate.

Overdamping results in excessive time to reach the desired state; it may not reach it

at all, leaving a residual error. Critical damping causes the desired state to be
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reached in minimum time without any overshoot. This is usually the design goal, but

often a little underdamping is designed into the system because the desired state can

be reached in a slightly shorter time than witn critical damping, but at the expense

of a small overshoot.

The loop filter design parameters, which provide for the correct amount of

damping, are determined from way the satellite mass reacts to a speed change in the

momentum wheel. Engineers have determined that a lead-lag filter in parallel with

an integrator stage can provide the optimum damping.

As shown in the simplified schematic of Figure 14, the pitch error processing

circuit consists of an input buffer, a lead-lag filter stage, a parallel integrator, and an

output summing amplifier. The buffer provides an inverting gain of 2.67. The buffer

output is fed to two parallel paths: the lead-lag filter and the integrator.

4XuF

-- I N E R A T O R 4 W 3 2 h

IN UluF JA8M 13.7M4 
/1)

BUFFER 9tK M

LEAD FILTER

Figure 14 - Pitch Error Processing Circuits (OOH:3.2-195)

The lead-lag filter provides a transfer function of

H(s) - -(15.3s + 1) ~ -(15s + 1)
(1.37s + 1)(1.62s + 1) (1.5s + 1)2
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The integrator circuit path provides a transfer function of

-K
H(s) 

-

Ts+ 1

where

KK t 75, T 7500, - =0.01 ±10%
T

0.01H(s) =
S

The two paths are summed together in the output summing amplifier, which provides

a gain of 6.65 to the lead-lag filter and a gain of 0.665 to the integrator output. The

summing output is fed to the Wheel Drive Electronics (WDE) as the wheel control

voltage.

Wheel Drive Electronics

The main function of the Wheel Drive Electronics (WDE) is to accept the

control error voltage input from the Wheel Control Electronics (WCE) and use it to

accelerate or decelerate the reaction wheel. This will produce torques that provide

stability of the spacecraft about the pitch axis (Y-axis). The control loop includes

four sections: the control error processing circuits, a pulse width modulator, a

switching regulator, and the two-phase logic and drive amplifier circuits. These four

blocks are illustrated in Figure 15.

Control Error Processing Circuits. The first block in the control error

processing circuit buffers the wheel control voltage and converts any negative voltages

to positive values. Hence, the output is the absolute value of the input. This

absolute value is required because the motor speed control circuitry can only be

driven with a positive voltage. This block also produces a bilevel polarity signal that
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Figure 15 - Wheel Drive Electronics

is derived from polarity of the input wheel control voltage. This polarity signal

controls the phase of the drive to the motor, and hence its direction. The absolute

voltage is summed with a feedback voltage from the switching regulator and fed to

a 3.83 second lag filter for loop compensation. The output of this filter drives the

pulse width modulator which sets the duty cycle of the switching regulator.

Pulse Width Modulator. The pulse width modulator circuit consists of a

comparator, an RC circuit and a 1 microsecond one-shot multivibrator. On the

leading edge of the 19.6 kHz clock, a 1 microsecond pulse discharges the capacitor

via the FET switch. The capacitor then charges to the unregulated supply voltage :

through R. The capacitor voltage is connected to the comparator positive input, and

the wheel control voltage from the lag filter is connected to the negative input. The

capacitor voltage eventually reaches the level of the wheel control voltage and the
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Figure 16 - Pulse Width Modulator - Timing Diagram

comparator output goes to the high state for the remainder of the 19.6 Khz clock

period. This high state switches "off" the regulator output current. The comparator

low output state switches the regulator output current "on". With high wheel voltage

input, the regulator output current is on most of the time (of the 19.6 Khz clock

period), and with low wheel voltage input, the regulator output current is off most

of the time. Pulse width modulator timing is illustrated in Figure 16.

Switching Regulator. The filtered switching regulator output is connected to

the center taps of the motor windings. The amplitude of the average current

determines the speed of the motor. The comparator output drives the base of a PNP

transistor, which in turn drives the base of a high current Darlington pair configured

as a regulator series-pass transistor. The pulse-width-modulated current from the

series-pass transistor is fed through an LC filter network to smooth out the pulses

before being applied to the motor winding center taps.

IWo Phase Logic and Drive Amplifier. The reaction wheel drive motor is a

200 Hz, two phase induction motor. Drive current for the motor is supplied from the

switching regulator connected to the center tap of the motor windings. The ends of
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the windings are switched to ground, with high current Darlingtons, in a 90 degree,

two-phase sequence to provide for torquing in either direction. Inductive motor

currents are shunted to ground by reverse-connected diodes across each driver

transistor. The inputs of the driver amplifiers are transformer-coupled to buffer

drivers which are driven by 200 Hz, two-phase logic circuitry. The drive current to

the transformers consists of a fixed value, from the two-phase logic circuitry, and a

variable value that is proportional to the switching regulator output. This ensures

that the transistor base current is increased only when needed. The two-phase logic

circuits derive their 90 degree, 200 Hz signals from a 800 Hz synchronous counter.

The output of this counter is gated with the polarity signal, from the control error

processing circuits, to switch the phase when required.

Reaction Wheel Assembly

The reaction wheel is an inertia wheel that produces corrective torques about

the pitch axis (Y-axis) of the spacecraft whenever the wheel speed is accelerated or

decelerated. During normal on-orbit operation, wheel speed is controlled by the

wheel drive electronics (WDE) which receives the pitch-error voltage from the earth

sensor assembly (ESA) via the earth processing electronics (EPE). The wheel spins

at a nominal bias speed of 3000 rpm. The corrective torques maintain the

spacecraft's pointing to the center of the earth about the pitch axis to within 0.25

degrees. Gyroscopic coupling of the wheel bias momentum with the spacecraft orbit

rate provides passive control of the spacecraft about the yaw axis (Z-axis).

Wheel Description. The wheel described in the OOH has an outside diameter

of 13 inches and weighs about 12.5 pounds. The two-phase induction motor is press-

fit into the hub of the wheel. An electromagnetic pickup is mounted adjacent to the

rim of the wheel, where a notch in the rim causes it to generate an electrical pulse
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once every revolution. The temperature of the wheel bearing is sensed by a closely

located thermistor.

Wheel Operation. The wheel drive electronics converts the pitch error signal

into two-phase, 200 Hz, squarewaves which are applied to the induction motor inside

the wheel. Depending on the phasing between the two signals, the wheel will be

accelerated or decelerated providing the reaction torque to the spacecraft in a

direction to reduce the earth pointing error. Whenever the wheel speed goes outside

its limits, or when the wheel is not required for normal on-orbit operation (e.g., a

spacecraft velocity change), the wheel is caged and its speed brought back to the

nominal 3000 rpm. This is done by a closed loop circuit employing the WCE, WDE

and the tachometer output.

Gyroscopic Coupling. The wheel spin axis is lined up with the spacecraft Y-

axis, which is parallel to the orbit axis. If the spacecraft rotates about its yaw axis,

away from its nominal position, the bias momentum of the wheel, coupled with the

spacecraft's orbit rate, will provide gyroscopic torques to return the spacecraft to its

proper orientation about the yaw axis.
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Figure 17 - Reaction Wheel Assembly - Schematic (OOH:3.2-268)

A schematic of the reaction wheel assembly is illustrated in Figure 17, and a

lis: of performance parameters is listed in Table 3.
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Table 3

Reaction Wheel Assembly Parameters (OOH:3.2-269)

Parameters Performance

Angular Momentum at nominal speed 6.77 ft-lb-s t_2.0%

Nominal Speed 3000 rpm

Speed variation range ±500 rpm

Wheel run-up time 76 sec with 120 W or 25 V max
applied

Wheel torque (in-oz), 120W or 25V min: Accelerating Decelerating
2500 - 3317 rpm 15 14.5
3317 + 3565 rpm 10 10

Steady state power 12 W max at 70'F or higher in-
creasing linearly with decreasing

temp to 24 W at 0*F

Excitation:
Voltage 24 to 30 V p-p, squarewave
Frequency 200 ±1.0 Hz
Phases 2
Phase shift 90 ±50

Tachometer output:
Polarity (pin B - Pin A) + for counter clockwise rotation
Amplitude at 3100 rpm:

positive 3.0 to 12.0 V
negative 0.2 to 1.0 V

Slope between 1.2 and 0.8 V -3000 V/s min

Summary

The aim of this chapter was to present a part of a satellite subsystem that can

be modelled for use in an automatic fault detection system employing model-based

reasoning. The attitude velocity control subsystem (AVCS) of a typical geo-stationary

satellite was selected to be the subsystem for experimentation. An overview of the

function of the AVCS was given, but due to complexity, only the pitch channel of the
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AVCS was presented in enough detail to enable computer modelling for the model-

based reasoner to operate on.

This chapter first presented a general description of the satellite, followed by

a description of the AVCS. The AVCS's hardware can be configured in one of seven

modes, corresponding to the function of the satellite at any given time. Configuration

in the 4B-Normal mode was selected because that is the mode the satellite is in for

most of its life. Only the pitch control channel, in the 4B mode, was presented in

detail; all inputs, outputs, and a functional description, for the channel as a whole,

were given. Individual components of the channel (those that can be switched to a

redundant backup) were then described in enough detail to enable computer

modelling.
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V. Software Development

Introduction

In an autonomous satellite, fault detection software would become part of an

imbedded system and tightly integrated with the hardware. Since the software is

intended to function automatically, the software can be less complex because there

is no human interface. As a real satellite's telemetry data was not available for

software validation, a simulation of a real system was used to test the software. The

test facility will of course, require at least a rudimentary human interface. To save

programming effort, the rudimentary interface is provided by the basic input/output

facilities of the development language itself.

In this chapter, the criteria for selection of a computer language are discussed.

The computer modcl for the pitch control channel is developed by first defining the

objects and their behavior, then their interconnection structure. fhis is followed by

the development of a model-based diagnostic reasoner. The reasoner is based on

Scarl's work, as the fault detection problem is similar to a process control system with

commands and many sensors.

Language Selection

Several computer languages were investigated with the potential to accomplish

this programming task. A list of desired characteristics for the programming

language (listed in priority order) is shown below:

* Object-Oriented. Each component has its own input, output and function. Each

component is an object whose internals are manipulated only by sending messages

to and from the object. Object-oriented languages are designed to do exactly this,
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with the added benefit of fast prototyping and protection against inadvertent

modification of data inside objects

" Common Language. A common language that is portable across machine types.

Common refers to a language that many programmers know, and portability

means compilers exist for a number of processors. Ultimately, this will lead to

faster, and less costly development.

* Convenience. The language should provide convenient programming features.

For example, it should be able to manipulate symbolic data by its name. The

language should not burden the programmer with taking care of housekeeping

chores, such as memory allocation and de-allocation. Convenience also means the

language should provide good debugging facilities. These conveniences enable

rapid prototyping, which again will lead to a faster, cheaper and maintainable

product.

* Efficient Code. The language should be able to produce tight and efficient

machine code. For on-board satellite operation, computer resources are always

at a premium. To fit most functionality into the smallest space (rom, ram, disk

space, and the physical hardware) code size and efficiency is important.

" Software Development. The language should enable software development on a

personal computer (PC). PCs are a relatively inexpensive resource. As PCs and

compilers become more sophisticated, many programmers will move their software

development to these platforms. In the long term, this can result in considerable

saving in software development expense. The saving is not only because PCs are

cheaper, but also because many programmers have access to these machines and

their cheaper (but not less sophisticated) development tools.

The languages considered in this study were, Smalltalk, Lisp with Flavors,

C++, and Scheme with SCOOPS. Flavors and SCOOPS are object-oriented
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extensions to the Lisp and Scheme languages respectively. As with any engineering

endeavor, the characteristics listed above cannot all be met and typical engineering

tradeoffs must be made. The ideal language is one that provides a very high level

of abstraction, can handle symbols and manipulate objects without any consideration

of the overhead, and compile code with the efficiency and compactness of an

assembler.

This programming task entails building a model that can be simulated in the

computer, then building the routines that manipulate that model to carry oUt model-

based reasoning to diagnose faults in the model. Because of the simulation nature

of this task, object-oriented prograitiming (OOP) is almost essential, if not ideal, for

this task. All of the four languages listed are capable of OOP. Smalltalk, an

excellent OOP language, was rejected because its user interface is human oriented,

and consequently has too much overhead. Lisp with Flavors, another excellent

development platform requires the use of a specialized Lisp machine for efficiency.

It would be very difficult to efficiently transfer Lisp code to an imbedded on-board

system. C+ + is a reasonably high level language, produces tight code and its

software can be developed on PCs. C+ + can also be compiled (or translated

through C) on a variety of platforms to produce machine code that may be

ROMable, and so suitable for an on-board system. Scheme is a high level language,

similar to Lisp but much simpler and so does not require Lisp's overhead. Scheme

programs can be developed on a PC, but it does not operate as a true compiler, and

so does not produce native machine code that is ROMable.

Initially, the language chosen was C++, but after four weeks of

experimentation, and encountering problem after problem, this was abandoned in

favor of Scheme. The C+ + development system evaluated was Borland's Turbo

C+ +. It is a higher-level language than C, but its level is still far below that of Lisp

or Scheme. The programmer is responsible for many mundane tasks, such as
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memory allocation for objects and other variables. Lists and arrays of objects were

created but they could not easily be manipulated as symbols. Some problems were

also experienced with corruption of encapsulated data. That is, data inside an object

(such as the voltage output state of an amplifier object) should be changeable only

by sending a message to the object (amplifier to calculate its output given its inputs);

however, it changed by some other means, unknown to the author. Perhaps the

biggest problem with the C+ + language was this author's lack of experience with C

and not mastering the C+ + extensions in the short time available. This author still

believes C+ + to be the best programming language for the task, provided the final

product has to be installed into an on-board system. Borland's implementation

certainly has the potential for this because of its efficient code generation and its

superb user interface that provides for convenient software development, code

optimization and debugging. Not having time to pursue C+ +, the author chose PC

Scheme for this programming task because of its simplicity, superior symbol

manipulation, PC usability, and most importantly for this thesis effort- fast

prototyping.

The Scheme Programming Language

Scheme is a dialect of Lisp. It is simpler than Lisp but really not less

powerful. Lisp achieves its power by providing a vast array of ready made functions

for the user. In Scheme, many functions have to be built by the programmer. An

important difference between older Li:,p dialects and Scheme is that Scheme is

lexically scoped and all data types and structures are first-class objects. These two

differences affect the way a programmer uses the language. Lexical scoping means

each variable only exists inside a function call (procedure), aiid never outside the

function. This provides a degree of protection for variables inside a function (often

called data encapsulation, or information hiding) and is an essential part of object-
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oriented programming in Scheme. Programmers benefit because they do not have

to be as concerned about naming their variables and it encourages a functional

programming style. Having all data treated as first-class objects means all data are

treated in a consistent manner. That is, complex data types such as structures, arrays

and functions themselves, can be passed to functions as easily as can simple data

types. This consistency, in treating all data as first-class objects, simplifies

programming considerably because the programmer does not need to know in

advance what can, and what cannot, be manipulated in certain ways.

This software design project uses Texas Instruments' PC Scheme, and its OOP

extension called SCOOPS, an acronym for SCheme Object Oriented Programming

System. The concepts and syntax of SCOOPS are similar to those of other Lisp

based object-oriented extensions such as LOOPS and Flavors; they rely, however, on

features of the Scheme language discussed above.

Object-oriented programming manipulates objects which represent abstract

entities. An object is composed of variables and methods. Variables determine the

local state of the object, and methods are procedures or functions that define the

object's behavior. Higher levels of abstraction are built up through inheritance. That

is, higher-level classes of objects may inherit the properties of other classes. Large

systems can therefore be built from parts that can be developed and maintained

separately. The only way to interact with an object is by sending a message to it. An

exception: methods that belong to a particular object can manipulate that object's

-ariables directly.

76



Software Development

The software was developed in three phases. The first phase develops the

objects used in the model. The second phase develops the structure, the way the

objects are interconnected. The third phase develops the model-based reasoning

mechanism to diagnose faults in a real system using the model. A computer

simulation of a real system will be used to validate the reasoning mechanism.

Therefore, there will be two computer models, one representing the real system

which can be "broken", and the other that is used to generate expected values for the

"real" sensors used in the diagnostic reasoning.

Function

The objects representing components in the pitch control channel, will be

descendants from higher class objects, or super classes that contain attributes

common to all objects. The super classes will be developed first, followed by the

individual objects in the pitch control channel. Development order will be: the Earth

Processing Electronics (EPE), the Wheel Control Electronics (WCE), the Wheel

Drive Electronics (WDE), the reaction wheel itself (WHEEL), and the Earth Sensor

Assembly (ESA). Although the pitch error signal emanates from the ESA, the ESA

object will be used to model the spacecraft's reaction to wheel acceleration. This

way, the rate of pitch error reduction can be calculated. The SCOOPS class

definition is used to declare an object's variables. The object's function is defined in

the defined classes methods. Class definitions for all components, and their methods

are listed in file PDEES at Appendix A.
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Super Classes

All objects have several things in common. Therefore a super-class called

COMPONENT is created that includes all the common attributes of the objects in

the pitch control channel. For example, each object has a name, a status, input and

output lists (that hold a list of objects connected to the input and output

respectively), and a state (calculated from its inputs) that is transmitted to those

objects in the output list. An example SCOOPS class used to define COMPONENT

is shown in Listing 5. Note that a class only defines the variables and methods an

(define-class COMPONENT
(instvars
name
Sstatus 'on)
state 0
input-listoutput-list

(options
gettable-variables
settable-variables
inittable-variables ))

(compile-class COMPONENT)

Listing 5 - SCOOPS Example for COMPONENT Class

object can use. It does not create the actual object that can be connected into a

circuit. An object is created and can be connected into the circuit when an

"instance" of the class is defined. This will be done under the Structure development

below. The example in Listing 5 highlights some important points. Instance variables

are created using the instvars keyword. The name variable is on a line by itself. This

means it is initially unassigned and only gets filled when an object is instantiated. The

status variable stores the status of the object; in this case, it is initialized to "on".

The state variable stores the output state of the object and is shown initialized to 0.

This variable is only set by the deposit-value method, which recursively propagates the

value of state through the system, starting with connected objects declared irn the

output-list. The deposit-value method is shown in Listing 6.
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(define-method (COMPONENT deposit-value)
I value)
set!I state value)
tell-other output-list) )

(define (tell-other output-list)
(cond

( (null? output-list)
nil

(else
I send (eval (car output-list) )update)
tell-other (cdr output-list))))

Listing 6 - Example Method for COMPONENT Class - Deposit-Value

The input-list and the output-list are both initialized to an empty list. The

gettable-, settable-, and inittable-variables statements ensure that each of the instance

variables listed, can be got, set and initialized respectively. In SCOOPS, all class

definitions follow this basic arrangement. Using the describe function of SCOOPS

with the class name as an argument, displays the class as shown in Listing 7. As can

be seen in the Figure, the description not only lists the methods defined by the

E61 (describe component)

CLASS DESCRIPTION

KANE: COPONENT
CLASS VARS t ()
INSTANCE VARS : (NAM STATUS STATE INPUT-LIST OUTPUT-LIST)
METHODS , (DEPOSIT-VALUE SET-MAKE SET-STATUS SET-STATE SET-INPUT-LIST

SET-OUTPUT-LIST GET-NAME GET-STATUS GET-STATE GET-INPUT-LIST GUT-OUTPUT-LIST)
NIXINS :j
CLASS COMPILED ;
CLASS INHERITED I #T
()

Listing 7 - SCOOPS Class Description for COMPONENT

programmer (deposit-value), but also those methods generated automatically by

SCOOPS that get, set and initialize variables in the INSTANCE VARS list.

Another class that can be considered a super-class, because it is used to derive

other classes and not used to instantiate working objects, is the AMPLIFIER class.

The structure of this class is shown in Listing 8. The (mixins COMPONENT) line

shows that this class is inherited from the COMPONENT class. All variables and
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(define-class AMPLIFIER
(instvars

tolerance
ffault-list '(high low zero latchup latchdown))

(mixins COMPONENT)
(options

gettable-variables
settable-variables
inittable-variables ))

(compile-class AMPLIFIER)

(define-method (AMPLIFIER update)
()
(case status
( 'on (let ( (vo (amp-state)))

(if (number? vo)
(deposit-value vo)
nil )))

( off (deposit-value nil) )
'latchup (deposit-value limit) )

( 'latchdown (deposit-value (* limit -1)) )
I 'zero (deposit-value 0) )
( 'high (let ( (vo (amp-state)))

(if (number? vo)
(deposit-value(et ( (hi-val (+ vo 5)))

(if (>? hi-val limit)
limithi-val )))

nil )))
'low (let ( (vo (amp-state)))

(if (number? vo)
(deposit-value

(let ( (10-limit (* limit -1)
(lo-val (- vo (* vo 0.2))) )

(if (<? lo-val lo- imit)
lo-limit
lo-val )))

nil )))
(else (writeln "*** ERROR: Invalid status: " status)) ))

(define-method (AMPLIFIER amp-state)

(let ((vi (send (eval (car input-list)) get-state))
(if (null? vi)

nil
(let ( (vo (* gain vi)?

(upper-rail limit)
(lower-rail (* limit -1)) )

(cond ( (or (in-range? state vo tolerance)
(and (>? vo upper-rail)

(equal? state upper-rail) )
(and (<? vo lower-rail)

(equal? state lower-rail) ))nil)
(else

(cond
( (>? vo upper-rail)
upper-rail)

( (<? vo lower-rail)
lower-rail

(else
vo ))))))))

Listing 8 - AMPLIFIER Class
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methods in the COMPONENT class are now available to all derived classes (or

instances) of the AMPLIFIER class. The gain variable represents the gain of the

amplifier, and the limit variable represents the positive and negative voltage swing

limits of the amplifier output. The tolerance variable is required for analog objects

to enable voltage comparison against a range rather than checking against an

absolute value. For example, in a feedback circuit, signals will propagated through

objects in a circular fashion. When the State variable comes within the tolerance

range, propagation ceases, and the system can be considered stable. The fault-list

includes a number of possible fault conditions that a typical amplifier can experience.

These conditions are used by the model-based reasoning algorithm to diagnose the

system. Most components in the system are essentially amplifiers. They have a gain,

or some other transfer function, and will derive their classes and methods from the

AMPLIFIER class.

As briefly mentioned above, each object has an update method that calculates

the state of the object from the inputs. To determine the state for an amplifier

whose status is "on" (no fault conditions), the update method calls the amp-state

method which determines the output state by a simple multiplication of the gain with

the input. The amp-state method also checks the new state against the limits and

adjusts the state accordingly. If the amplifier's status is something other than "on",

the update method determines the state accordingly. For example, if the status is

"latchup", the update method will place the value of the positive limit in the state

variable. The UPDATE and AMP-STATE methods have been listed together with

the AMPLIFIER class definition in Listing 8. If a class derived from the

AMPLIFIER class uses a method with the same name as one of AMPLIFIER's

methods, then the new method will override the AMPLIFIER's method. In object-

oriented programming parlance, this is often called overloading. As will be seen, most
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objects will use AMPLIFIER's UPDATE method, but will overload the AMP-STATE

method because that is where the output state is calculated from the input.

The SCOOPS description for the AMPLIFIER class is shown in Listing 9. Notice

that most variables and methods are inherited from the COMPONENT class, shown

here declared in the MIXINS line.

[7] (describe amplifier)

CLASS DESCRIPTION

NAME t AMPLIFIER
CLASS VARS ;(0
INSTANCE VARS t (OUTPUT-LIST INPUT-LIST STATE STATUS NAME GAIN LIMIT

TOLERANCE FAULT-LI ST)
METHODS : (AMP-STATE UPDATE GET-OUTFUT-LIST GET-INPUT-LIST GET-STATE

GET-STATUS GET-NAME SET-OUTPUT-LIST SET-INPUT-LIST SET-STATE SET-STATUS SET-NAME
DEPOSIT-VALUE SET-GAIN SET-LIMIT SET-TOLERANCE SET-FAULT-LIST GET-GAIN
GET-LIMIT GET-TOLERANCE GET-FAULT-LIST)

MIXINS ( JCOMPONENT)
CLASS COMPILED T
CLASS INHERITED # TC)

Listing 9 - SCOOPS Description for AMPLIFIER Class

Earth Processing Electronics

The earth processing electronics (EPE) uses a digital to analog converter

(DAC) to convert the pitch error angle from the earth sensor assembly (ESA) to a

voltage used by the wheel drive electronics (WDE). This simple operation can be

(define-class EPE
(instvars

(ain 0.976)limit 5
Itolerance 0.001) )

(mLins AMPLIFIER)(opt ions
gettable-variables
settable-variables
inittable-variables ))

(compile-class EPE)

Listing 10 - EPE Class Definition

modelled with an amplifier that has a gain equal to the transfer function of the DAC.
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This transfer function was found in the last chapter to be 0.976 volts/degree. The

output is limited to ±5 volts. The EPE class definition, which is derived from

AMPLIFIER class, is shown in Listing 10. It defines no methods of its own, using all

those of the AMPLIFIER class and the COMPONENT class.

Wheel Control Electronics

The wheel control electronics is more difficult to model than the EPE. It

provides the loop compensation for the pitch control system, and is therefore a time-

dependent object. From Figure 14 and the discussion in the last chapter, the

transfer function of this object can be determined from the equations given for the

lead-lag filter and the integrator. Since the integrator is required to overcome the

wheel drag, and the wheel drag is not being modelled, the integrator can be ignored.

The transfer function for the lead-lag compensation filter is given in the complex

frequency s domain. The computer simulation is essentially a sampled-data, or

discrete time, system. Therefore, a difference equation (the analog of a differential

equation for continuous systems) will be used to model the filter. The difference

equation is derived from the s-domain transfer function. To do this, the s-domain

transfer function must first be transformed to the z-domain. The difference equation

can then be derived directly from the z-domain transfer function.

Before deriving the difference equation, several assumptions must be made.

First, that the WCE is a Linear Shift Invariant (LSI) system, so that s can he replace

by 1 - Second, that the sample time T is one second. This could be
T

enforced in an on-board diagnostic system by using a real-time clock and interrupt

hardware to read sensors at one-second intervals, and having the computer model

complete each loop through the circuit in one second. The one-second sample time

assumes that the input varies slowly in comparison to the sample time. If this were

not the case, aliasing errors would become a factor. The one-second sample time
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should be a good assumption because, in reality, the satellite typically takes hundreds

of seconds to correct for small (less than one degree) pitch errors. Given the sample

time T = 1, transformation of the transfer function from the s to z domain can be

accompi'ied using 1 - z - 1

A block diagram of the WCE showing the s-domain transfer functions in each

block, is illustrated in Figure 18. Ignoring the integrator, and placing all gain

-0 0.01 o 0.6

V in I n e ra o A m l f e V o u t

Amplifier

_10 15s + 16.65V2 (1.s p
Lead-lag filter Amplifier

Vn 15s+1 Vout
(1.5s8+1? -17.75

Lead-lag filter Amplifier

Figure 18 - WCE Block Diagram

components at the output, the lower block diagram in Figure 18 will used for this

simulation.

Given the s-domain transfer function

H(s) Y(s) _ 15s + 1
X(s) (1.5s + 1)2
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and substituting 1 - z -1 for s, and expanding, gives

Y(z) - 15(1 - z 1) + 1 = 16 - 15z 1

X(z) [1.5(1 - z- 1) + 1]2 6.25 - 7.5z - + 2.25z - 2

A subsequent cross-multiplication, gives

6.25Y(z) - 7.5z-'Y(z) + 2.25z -2 = 16X(z) - 15z-'X(z)

To convert this equation to a difference equation, we use the following relations:

Y(z) -. y(n)
z-1 Y(z) - y(n-1)
z 2Y(z) - y(n-2)

X(z) -. x(n)
z-X(z) -. x(n-1)

Substituting the above relations and rearranging in terms of the output y(n) gives

y(n) = 2.56x(n) - 2.4x(n-1) + 1.2y(n-1) - 0.36y(n-2)

This difference equation will be used in the model to determine the output of

the filter. As can be seen, the calculation of y(n) not only requires the current input

x(n), but also requires the previous input x(n-1), and the two previous output values,

y(n-1) and y(n-2). Figure 19 through Figure 21 show the results of a Quattro

spreadsheet simulation of this difference equation. The step input, in Figure 21,

shows that the output is underdamped.

i----i Inpt- - A m p 3v, Fr-A --------

0-, .- -, r . , I p it

'31 ci AU : \" ut u

-- --- -- -- ..... ... -- ----..... -----------.. .... .......... . ..... . . ........ -- --- - ----- -, ------- . .. . .. .

o _ ~ ~ ~ -----------------. . . . . ... . . .: ".. .... .. ------.. .. . -. ---. ...

- -- - ---. V.....-......---- .. ... ..... .- ...... ....... , .:.............. & -:............. V ....... .......... \ -

Figure 19 - WCE Filter Response with 0.1 Hz Sinusoid Input
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0 10 2 3b
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Figure 20 - WCE Filter Response with 0.01 Hz Sinusoid Input

Figure 21 - WCE Filter Response - Step Input

The Output state of the WCE is given by the difference equation result, y(n)

multiplied by the gain of the last stage. With an output swing limit of -T volts, and

a tolerance set to 0.001, the WCE class can be defined as shown in Listing 11.

Wheel Drive Ekctronics

The wheel drive electronics (WDE) takes the compensated control voltage

from the WCE and turns it into a voltage, with a range of -25 volts, to drive the

reaction wheel motor. With an input range of ±25 WDE can be modelled as a simple

amplifier with a gain of one. This stage also includes a 3.83 second lag compensation

circuit that should be modelled if this is stage is to accurately represent the temporal

operation of the WDE. Unfortunately, the orbital handbook only states that this lag

filter exists, and does not give the s-domain transfer function.
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(define-class WCE
( instvars

gain -17.7F'xn 0)
Xn-I 0
Yn 0
Yn-1 0)
Yn-2 0
limit 25)Itolerance O. 0001)(m ns AMPLIFIER):

Options
gettable-variable8settable-variables
inittable-variables ))

(compile-class WCE)

(define-method (WCE amp-state)

let (Xn (send (eval (car input-list)) get-state)) )
(if (null? Xn)

nil
(let* ( fYn (+ (* 2.56 Xn) (*-2.4 Xn-1)

.(*12 Yn-1) -(*0.36 Yn-2) ))jvo (gain Yn))
upper-rail limit)
lower-rail (* limit -1)))

set! Yn-2 Yn-!)
Ssett n-2 Yn-)
sett Xn-I XI
Icond ( (or (Ln-range? state vo tolerance)

(and > vo upper-rail)
(an .(eual? state upper-rail) )•(and <? vo lower-rail)

nil) equal? state lower-rail)))
(else

(cond( (>? vo upper-rail)
Upper-rall .)

( {< vo. lower-rail)
(jower-rail
(else

Listing 11 - WCE Class Definition

Fortunately, the basis of a difference equation for a 3.83 second lag filter can

be derived from the general transfer function of a lag-compensating filter, but with

an unknown variable, a, to be determined.

The general lag filter transfer function is given by

H(s) -Ts+1
aTs + I

For T = 3.83 seconds, this becomes

H(s)= 3.83s + 1
3.83as + 1
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To derive the difference equation, we first transform the transfer function to the z-

domain by substituting 1 - z for s. The transfer function becomes

H(Z) - Y(z) _ 3.83(1-z -1) + 1 4.83 - 3.83z -1

X(z) 3.83a(1-z -1) + 1 (3.83az + 1) - 3.83cz-1

As before, cross multiplying and substituting the difference-equation relations for the

z values, and putting the result in terms of the output y(n), gives

y 4.83x(n) - 3.83x(n-1) + 3.83ay(n-1)
y(n) 3.83a + 1

This difference equation will be used to model the 3.83 lag filter in the WCE.

Using a Quattro' simulation of the WCE compensation filter and the WDE lag filter

in cascade, an a value of 4.5 was found to provide the best overall response to a unit

step input. The step response of both filters individually, and together in cascade are

shown in Figure 22. The WDE class definition is shown in Listing 12.

Unit Step lnpit, alpha=4.5
3.5-

2.5 ............................... ..................................................................

2. ............. ................................................................ -.......

0 10 2 0 30 40 50 6
Seconds

-Step Input -- WCE Resp -E WIDE Resp - Overall Besp

Figure 22 - Step Response of WCE and WDE Filters in Cascade
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(define-class WDE
(instvars

q(ain 11

(Xi 0)
Xn-l 0)

to lrance 0.0001))
imixins AMPLIFIER)

opions
9ettable-variablos
settable-variables
inittable-variables )

(compil-claSS WDU)

(define-method (WDE amp-state)

R et {(Xn (send (oval (car input-list)) get-state))
(if (null? Xii)

(let* ((Yn (I(+ (* 4.83 Xn~ -3.83 Xn-I)
- 3.83 *LH Yn-I)

(+ 3.83 -ALPHA*) 1))
(v *gainY)
(upr-rail limit)

(loweiir-rail (* lt -1)).)
sett Yn-l Yn)

Iset! Xn-l Xn)
cond ( (or un-range? state vo tolerance)

iand>7 v uper.-rail)

(and < loower-rail

nil equal? state lower-rail) )
(else

(cond

lower-rail)
(else
vo ))))

Listing 12 - WDE Class Definition

Reaction Wheel Assembly

The input voltage is applied to the wheel motor to create a torque that

accelerates or decelerates the wheel. This torque is applied equally, in opposite

directions, to the wheel's moment of inertia (L,) and the spacecraft's moment of

inertia (Qi. An object's moment of inertia, moving in a rotational frame, is the analog

of an object's mass moving in a linear frame. Therefore, equations used to calculate

linear quantities can be used to determine the angular equivalents, by replacing the

linear quantities with the angular quantities shown in Table 4.
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Table 4
Analogous Linear and Angular Quantities

Linear JAngular

Displacement s Displacement 0

Velocity v Velocity W

Acceleration a Acceleration a

Mass (inertia) m Moment of Inertia I

Force F = ma Torque = Ia

Momentum mv Momentum 1W

On the spacecraft, a sensor provides a differential wheel speed. This deviation

from the nominal 3000 rpm can be generated by the model, but the value alone

cannot be used to determine how the acceleration of the wheel causes a rotation of

the spacecraft about the pitch axis. The amount of physical rotation of the spacecraft

is required to close the loop. This rotation reduces the error detected and output by

the ESA. The data in Table 2 and Table 3, in the last chapter, provide enough

information to derive equations that can help determine the angular displacement of

the spacecraft given a reaction wheel speed change.

What is needed is a value for angular acceleration of the wheel (a,.), for a

given voltage inp'it. The angular acceleration can be used to determine the angular

velocity changes in the wheel and hence the differential wheel speed. Also, since the

torque on the wheel is equal to the torque on the spacecraft, but in the opposite

direction, the angular acceleration of the wheel can be used to determine the angular

acceleration of the spacecraft, provided the ratio of the moment of inertia of the

wheel to that of the spacecraft is known.

The data from Table 3, show that the maximum input voltage coming from the

WDE is -+25 Volts. With 25 volts applied, the motor generates a torque, to

accelerate the wheel, of 15 in-oz, or 0.106 N-m in MKS units. Angular momentum
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of the wheel is given as 6.77 ft-lb-s, or 9.18 N-m-s. Since angular momentum is given

as Iw and w = 3000 rpm or 314.16 rads/sec, then the moment of inertia for the

wheel, 1, = 0.02922 Kg-m2. Using the torque equation, 7 = Ia, a. can be determined

from

O.106(N-m) 3.63r/S2

Iw .02922(Kg-m 2)

Therefore, a voltage of 25 V gives an angular acceleration of 3.63 r/s2, or more

conveniently, 34.66 rpm/s. Assuming a linear relationship between input voltage and

acceleration, this results in a .ransfer function of 1.386 rpm/s/v.

The change in differential speed can be calculated as

A ca = (of- ca = awt = 3.63t rads/s

or, in terms of rpm, the new differential wheel speed can be calculated as

A rpm1 = A rpm. + a t

Again, since the sample time is one second, the t can be dropped from the equations.

The transfer function (gain) and the differential wheel speed (delta-rpm) are

used in the WHEEL class definition shown in Listing 13. The negative sign on the

transfer function ensures that the spacecraft will rotate in the right direction to null

out the pitch error.

Earth Sensor Assembly

As discussed in the last chapter, the ESA outputs a pitch error angle

determined from chord lengths of a scanning beam that picks up radiance from the

earth. The ESA is not modelled here on the way it works internally. Instead, the

computer model of the ESA block will output a pitch error angle determined from

the rotation of the spacecraft. The angular displacement is calculated from the

acceleration, aw, of the reaction wheel.
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(define-class wheel( instyars
iain -1.386)(elta-rpm 0;(limit 35

tolerance 0.0001 )
m I xins AMPLIFIER)(opt ions
gettable-variables
settable-variables
inittable-variables })

(compile-clasx wheel)

(define-method (WHEEL amp-state)

Iet* ( (vin (send (eval (car input-list)) get-state))
(if null? vin)

nil
(let { (alpha-wheel (*gain vin))

(upper-rail limit)
(lower-rail (* limit -1)) )

(cond ( (or (in-range? state alpha-wheel tolerance)
(and (>7 alpha-wheel upper-rail)
(an equal? state upper rail) I(and (<7 alpha-wheel lower-rail1

1equal? state lower-rail) ))
nil)

(else
(cond

( (>? alpha-wheel upper-rail)
(set! delta-rpm (4-delta-rpm upper-rail))
up r-rail )
((?alpha-wheel lower-rail)
set! aelta-rpm (+ delta-rpm lower-rail))

lower-rail(else(sett delta-rpm (+ delta-rpm alpha-wheel))

alpha-wheel ))))))))

Listing 13 - Wheel Class Definition

The pitch axis moment of inertia, I,, of the spacecraft is given in Table 2

(page 57) as 640 slug-ft2, or 867.5 km-m2 in MKS units. By Newton's third law the

torque on the spacecraft is equal and opposite to the torque on the wheel.

Therefore,

Rearranging in terms of a,, and substituting the values for moment of inertia gives
I O.02922(kg-m 2)

as = aw--f_ aw(rpm/s).
867.5(kg-m 2)

al(rpm/s)= rpm/s
29638.6

_ a(rpmls) radsls2

283505
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This angular acceleration (in rads/s') is derived directly from the wheel acceleration

(in rpm/s) with the transfer function (or gain term) of 1/283505. This acceleration

causes the spacecraft to rotate about the pitch axis to reduce the displacement error

0. The pitch control loop causes aw to become smaller as 0 decreases.

The amount of angular displacement is given by
1

0 = C)t+1f

For t = 1 second

0 = too +as rads,

and the new pitch error becomes

o. = 0 o-0o = 0om-(co o +2

Angular velocity, a)o, and acceleration, aw, are in radian units, but the pitch error

angle, 0.,, is stored in the ESAs output state as degrees, so an adjustment to the

equation is made as

,M. = 0oa - e = 0om- (ca. + -!,) 180 deg2 71

The above equations use angular velocity, w. Again, letting sample time, t = 1

second, w is calculated using

co = % + a. radsls

These equations are used in the method belonging to the ESA class to

calculate the new pitch error angle. The ESA class definition and method are shown

in Listing 14.
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(define-class NSA( instyars(,gain {1 283505))

( miins AMPLIFIR
options
gettable-variables
settable-variables
inittable-variables ))

(compile-class BSA)

(define-method (BSA amp-state)
Ret* J (send (eval (car input-list)) get-state))
(if null alpha-wheel)

ni~l
(let* ( alpha-sat (* gain alpha-wheel))

ome a-new + omega alpha-sat),)
the a (- state ( (+ omega (7 alpha-sat 2)) 5.73)))

p r-rail limit)lwr-rail (* limait -1))
I set t omega omega-new)
cond ( (and (in-range? 0 theta tolerance)

(in-range? 0 omega (/ tolerance 100)) )nil ) . .
(else
(cond
( (>? theta upper-rail)
upper-rail

(< <theta lower-rail)
lower-rail )

(else
theta ))))))))

Listing 14 - ESA Class Definition and Method

Commands and Sensors

In the code, command objects are used to input some external value into an

object in the model pitch control channel. They have no inputs, only an output state.

Sensor objects are similar, but have no objects in their output list, but do take inputs.

Sensor objects also maintain a list of upstream components. This list is the suspect-

list following detection of a discrepancy in that sensor. The sensor-object's state

should equal the state of the component connected to the input of the sensor. Since

a sensor can break, it is modelled as an amplifier with a gain of one. Command and

sensor object classes are defined in Listing 15.
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(define-class COMMAND
• mixins COMPONENT)
ioptionegettable-variables

settable-variables
inittable-variables ))

(compile-class COMMAND)

(define-class SENSOR
(instvars
upstream-components

• it 10)
ttolerance 0.0001)

1mxins AMPLIFIER)
optionsgettable-variables
settable-variables
inittable-variables ))(compile-class SENSOR)

Listing 15 - Command and Sensor Class Definitions

Structure

The structure of the system is represented by the interconnection of the

components in the pitch control channel. Components will be interconnected for two

cases. The first case is for the structure that represents the computer model. It will

have all its components prefixed with an "m". The second case is for the structure

that represents the real pitch control channel. It will include primary and redundant

components, post fixed with an "a" or "b" respectively, and all components prefixed

with an "r". The structure is based on Figure 9 in the last chapter. A simplified

diagram showing the model and real structure representations is illustrated in

Figure 23.

Interconnection data can only be placed into instantiated components. That

is, instances of the component classes defined above must first be declared before

they can be connected. An example of instantiation and interconnection is shown in

Listing 16. In SCOOPS's "make-instance" block, the connection of an object into the

structure occurs when the object's input-list and output-list reflect what objects are

connected to the input and output respectively. Listing 16 shows the first two
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Figure 23 - Model and Real Structure Representations

components, the ESA and EPE, in the pitch control channel and the two sensors

connected to their outputs. All objects are prefixed with an "m" so this example is

a part of the computer model. Note that in this case the pitch control loop has been

broken between the ESA and the EPE, and a Command has been connected to the

EPE input. The Command is connected to both the "real" and "model" structures,

and will be used to enter a pitch error angle to test the model-based reasoner.

The upstream-components list in the sensor objects show what components

upstream from that sensor arc suspect if that sensor reports a discrepancy. In some

model-based reasoning systems this list is built from a backward-search from the

current sensor to a command input (Scarl, 1987:364). This search is important in a

complex system that has many combinations of configuration states, but is difficult to

do in a feedback system because mechanisms must be built into the software to stop
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1;; earth sensor assembly
(define m-esa
(make-instance ESA

'name 'm-esa
'output-list '(m-epe esa-sensor)
'input-list '(m-wheel) )

;4; ; earth processing electronic&
m-epe

(make-instance EPE
'name •m-epe
'output-list 'm(m-wce epe-sensor)
'input-list '(command-l) )

;;earth sensor assembly sensor
(define m-esa-sensor
(make-instance sensor

'name 'rm-esa-sensor
'upstream-components '.(m-esa m-wheel m-wde m-wce m-epe)
'input-list (m-esa) ))

;; earth processing electronics sensor
(define m-epe-sensor

(make-instance sensor
'name 'm-epe- sensor
' upstream-components m epe)
'input-list •m-epe)

Listing 16 - Example Instantiation and Interconnection of Components

the search. Instantiation of all objects showing the interconnection of the

components in the model and the real pitch channel, is listed in files MPCHL.S and

RPCHL.S, in Appendixes B and C respectively.

Another file that is associated with the structure is the PCONTROL.S file.

This file, listed in Appendix D, includes functions and objects that are in common

with, or somehow control, both the real and model pitch channels. For example, the

command-1 object in Figure 23 is instantiated in this file because its output is fed to

both the model and real EPE. A function called set-pitch feeds an error signal into

the circuit to initiate the simulaton. This function also prints out the values of both

the model and real sensors. Functions that change the configuration of the pitch

control channel are also defined in this file. If the real pitch channel is reconfigured,

the model is reconfigured accordingly. The model always reflects the current

configuration of the real system. The PCONTROL.S file also maintains lists of all

the components in the pitch channel. These lists are used by the configuration

changer to replace objects in the input and output lists of each object to reflect
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changes made to the configuration of the pitch control channel. Other miscellaneous

"helper " functions are also kept in the PCONTROL.S file. One in particular,

DESCRIBE-ALL, uses the SCOOPS built-in DESCRIBE function to print out the

description of every instantiated object. This printout is listed in Appendix H, and

shows the reset state of all objects in the real and model pitch-control channels.

Model-Based Reasoner

The algorithm used by the diagnostic reasoner in this thesis is based on Scar's

work, described in Chapter III on page 31. The assumptions and limitations Scarl

makes for his full consistency algorithm, applied to LES, are relevant here. One

limitation mentioned is that the algorithm does not work on feedback systems.

Unfortunately, the pitch control system is one big feedback system; just as a

technician breaks a feedback loop to diagnose a fault, the reasoner developed here

will only be used when the loop is broken. The algorithm is described in Listing 17

and the detailed program listing is in file DIAGNOSE.S in the Appendix E. This

Algorithm:
find a discrepant sensor
if none found then

no fault in circuit
else

collect all components structurally upstream from
discrepant sensor and put into suspect list

repeat for each suspect
repeat for each fault hypothesis

hypothesize a fault 1br the suspect
ropagate change through the model

?eat all sensors for consistency
if sensors consistent then

leave suspect in suspect list
elseSclear hypothetical fault (not suspect)

end-repeat faultsfo
if all faults are ruled out then

clear suspect
end-repeat suspects
if one suspect remains then

print out the culprit
else

prinL oL. the list of suspects remaining

Listing 17 - Reasoner Algorithm (based on Scarl's Full Consistency Algorithm)

algorithm has been described in detail in Chapter III and will not be discussed further
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here. The diagnose function, that implements the algorithm, is written independently

of any system. Provided the knowledge representation in the class definitions are

adhered to, the diagnose function should operate on any system, within the

assumptions made in Chapter III.

Two other functions, fail and fir, in the DIAGNOSE.S file, are not related to

the diagnose algorithm, but provide a way of simulating a broken object. An object

can be broken using the fail function. This function simply sets the object's status

variable to one of the failure types listed in the object's fault-list variable. The fix

function removes the fault condition from the object by resetting its status to "on".

Summary

This chapter has presented all aspects of software development using a model-

based reasoning paradigm for fault detection in the pitch control channel of a

satellite's attitude control subsystem. The chapter addressed language selection and

why the Scheme language was chosen over Smalltalk, Lisp and C++. The chapter

described the development of the objects used in the simulation. This was done by

examination of the mathematical relationships between the object's input and output,

and coming up with suitable equations to reflect the object's behavior. The chapter

also described the interconnection of the objects that form the simulated pitch control

channel. The pitch control channel is a small section of the larger attitude and

velocity control subsystem. It was easily and quickly modelled using Scheme's object-

oriented language. It should not be too difficult to apply this to the larger subsystem.

Lastly, the chapter briefly touched on the algorithm used in the diagnosis process.

The next chapter puts the software developed to the test.
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VI. Results and Analysis

Introduction

This chapter will document the results and analysis of the software designed

in the last chapter. That software uses a model-based reasoning paradigm to detect

faults in a simulation of a pitch control channel of a typical geo-stationary satellite.

Results and analysis will be presented in two steps. First, performance results of the

designed computer model used to simulate the pitch control channel will be

presented. Second, results and analysis of the performance of the model-based

diagnostic reasoner will be presented.

Pitch Control Channel Simulation

The simulation of the pitch control channel was tested by closing the loop, and

injecting a pitch error angle to initiate the simulation. The ESA sensor was

monitored to determine how the system reacts to null out the error. The loop is not

actually closed by simple connection of the ESA output to the EPE input. Instead,

the loop is closed by inserting a function that takes the ESA output state and sends

it to the EPE. The test-loop function, shown in listing 18, carries out this task. It

(define (test-loop p)
reset-system)
set-tolerance .00000001
send m-esa-a deposit-value p)
writeln)
writeln "m-esa-sensor"
writeln (send m-esa-sensor get-state)
run-test) )

(define (run-test)
Ssend command-i deposit-value (send m-esa-a get-state))
writeln (send m-esa-sensor get-state) )
run-test))

Listing 18 - Function to Test Performance of the Pitch Control Channel Loop
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takes an argument, the pitch error angle, and injects it into the ESAs state variable.

Placing the test-loop function between the ESA and the EPE allows for observation

and printout of the ESA-sensor data with each pass through the loop. It also

prevents stack built-up and eventual memory-full errors that would occur if the

system was connected in a loop and let the deposit-value function recursively

propagate forever. The reset-system function sets the state of all objects to zero. This

ensures that the same initial conditions exist for subsequent runs to enable

comparisons to be made. The set-tolerance function sets the tolerance variable in all

objects to a small value to ensure that the simulation does not stop. The esa-sensor

values were sent to a file using Scheme's transcript-on function. This file was

imported into Quattro T and the results graphed.

Loop performance for an input step of 0.1 and 1.0 degree is shown in

Figure 24. The "alpha" value, in the Figure, was discussed in the last chapter on

page 87, and represents an unknown variable in the WDE compensation filter. In

Pitch Error Angle versus Time
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Figure 24 - Closed Loop Performance of Pitch Control Channel

that Chapter, a QuattroT' simulation of the difference equation for the lag filter was
used to determine a value that would give the best response to a step input. The
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value of 4.5 was chosen because it resulted in minimum overshoot and appeared to

provide the best damping to the input step. When used in this closed loop

simulation test, the system with alpha = 4.5 was found to be unstable! As shown in

Figure 25, the pitch error signal grew larger instead of decaying as expected. The

Pitch Angle error versus lime
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Alpfla= 4.50.1, -----------------.... .................................... ..............
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Figure 25 - Loop Performance for Three Alpha Values

reason for this is that the Quattro" simulation in the last chapter was only checking

the operation of the difference equations derived for the filters; it did not check the

filters in the closed loop configuration with the wheel and spacecraft momentum

taken into account. Two other values of alpha are shown in Figure 25: a value of 1.0

and a value of 1.7. Both these cases show the pitch error signal reducing with time,

but the system is still underdamped. With reference to the lag filter transfer function

equation in the last chapter, an alpha value of 1.0 reduces the filter to a simple buffer

with a gain of one. That is, the filter is effectively out of circuit. This probably

explains why so little emphasis was placed on it in the orbital operations handbook.

The orbital operations handbook specifies that pitch pointing accuracy be

maintained within -0.05 degrees. From the results of Figure 25, a step input of 0.1

degrees resulted in a settling time of about 150 seconds for both values of alpha (1.0
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and 1.7). For an input step of 1.0 degree, Figure 24 shows the settling time to be

about 700 seconds. This seems excessive and could be indicative of a problem with

the computer model. But just how much rotational impulse does a spacecraft receive

to shift it by as much as one degree? A clue to this comes from the discussion in

Chapter III on page 57 on reaction wheel unloading. The reaction wheel's

momentum is unloaded using a 0.05 second burst from a pitch thruster. This burst

provides a 0.25 degree rotation about the pitch axis. There is a 1000 second delay

before the next pitch firing to ensure the pitch error signal is fully decayed before

another firing. This indicates that the settling times produced by this model is in the

ball-park.

Now that the model has been checked serviceable, it is time to break it and

see if the model-based reasoner can detect the fault.

Model-Based Reasoner Testing

Method of Operation

The following text describes the steps used to test the model-based reasoner.

The first step is to set all objects to some initial state. This is done with the reset-

system function. It simply reads in the MPCHL.S and RPCHLS files and re-

instantiates all the objects. Next, the set-pitch function injects an initial pitch error

angle into the r-esa-a's state variable and calls the sp function to propagate the signal

through the rest of the system. The sp (for set pitch) function takes the signal from

the r-esa-a and uses command-I to inject it into the EPEs (model and real). The sp

function is invoked by the user any time he wishes to propagate the pitch error signal

from the ESA through to the rest of the real and model pitch control systems. In this

way, the user can set any desired fault conditions using the fail function, run sp to

propagate the ESA signal through the faulty system, and then invoke the diagnose
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function to try and detect the fault in the system. The sp function also displays the

value of the real and model world sensors with each invocation.

The above method of testing the system is done with the loop broken between

the ESA and the EPE. Only the real world ESA is used in the control loop.

Neither, the real nor model world ESAs are used in the diagnosis testing (Note the

missing esa-sensor from the all-sensor list in the PCONTROL.S file) because they are

used to model the spacecraft's reaction to the wheel's acceleration and do not reflect

the actual operation of the real ESA. Furthermore, the real-world ES/s omega

variable (instantaneous angular velocity of the spacecraft about the pitch axis), and

model-world ES/s omega variable, quickly become different with diagnosis activity,

Since the pitch error signal is calculated from this variable, the ESA-sensors would

always be discrepant, and so not useful for diagnosis purposes. The r-esa-a's pitch

error signal is assumed to be good. This assumption should be valid one, because

four pitch error signals are available from two on-board ESAs, and they could easily

be corroborated.

Following a set-pitch or sp invocation, and with no fault conditions set, the real

sensor values should equal the model sensor values. Invoking the diagnose function

at this time should report "no fault found" because no discrepant sensors are

detected. A fault condition is set using the fail function with an argument that

represents the failure type. This must be followed with an sp invocation to propagate

the signal through the faulty system. The model and real sensors should now show

different values. Invoking the diagnose function now should detect the faulty

component.

Following the detection of a faulty component, the system can be reconfigured

to switch out the faulty component and switch in the redundant one. Another sp

invocation is required to propagate the pitch signal through the newly configured
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(hopefully fixed) system. Invoking diagnose again should confirm a fix by reporting

"no fault found".

Rffu1 and Analys& - Designed Model

A sample Scheme program run that tested the reasoner against the pitch

control channel models designed in Chapter V, is listed at Appendix I. With

reference to that listing, the following is a description of its operation.

Lines 29 to 36 check the operation of the model-world and real-world pitch

channel systems, and with no fault conditions set, there are no discrepant sensors.

At line 37 a SCOOPS describe function was issued to look inside the r-wce-a object.

The WCE was failed with a "latchup" failure mode at line 38 and confirmed with

another look inside the WCE object at line 39. The latchup failure mode sets the

output to +25 volts, and the WCE ignores any changes to the input. This was

checked at line 40, and a discrepancy is confirmed between the real and model WCE

sensors. This is shown in Listing 19. At line 41, a diagnose command is issued.

[40l (sp)

Model BPS-Sensor = 0.472939960208774
Model WCE-Sensor = -8.75638074294346
Model WDE-Sensor - -9.45395266031472
Model Wheel-Sensor = 13.1031783871962

' heel dalta-rpim = 186.544048758552
Model NSA-Sensor = 0.47756298633463

esa omega = 6.57992094525853e-4

Real EPE-Sensor - 0.472939960208774
Real WCE-Sensor = 25
Real WDE-Sensor = 11.1190589701237
Real Wheel-Sensor = -15.4110157325915

wheel delta-rpm = 131.603725387073
Real NSA Sensor = 0.478652299563926

esa omega = 4.64202484566667e-4

DONS

Listing 19 - WCE Sensor Discrepancy

Debugging statements were left in the diagnose code to enable tracking of the

reasoner algorithm. The result: the reasoner could not come up with the cause of

the fault!
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On closer examination, the reason for this became clear. The filters in the

WCE and the WDE are memory devices. Their output is not only dependent on the

current input, but also previous inputs and outputs. Recall, the difference equations

used to model the loop compensation filter in the WCE is

y(n) = 2.56x(n) - 2.4x(n-1) + 1.2y(n-1) - 0.36y(n-2)

From this equation, it can be seen that more than one combination of input and

output values (x(n), x(n-1)), y(n-1) and y(n-2) ) can produce the same output y(n).

This makes it difficult to determine the input, given an output, and hence almost

impossible to find a fault model that could hypothesize the fault condition. This

difficulty with devices that have memory has been mentioned often in the literature.

In fact, in Chapter III, on this topic, Davis hinted that " ...future reasoning systems

would have to go back through time from the original discrepancy, just like current

reasoning systems go back through space [the circuit]."

Scarl also states in his paper (Scarl, 1987:362) on his LES implementation that

"Feedback and objects whose outputs are not direct functions of their inputs (objects

with state) have not been implemented, although doing so is high on our agenda."

This thesis work confirms the difficulty researchers have had in implementing model-

based reasoning on systems that have state that is dependent on time.

Rmdb and Analys& - Mod ifi Model

To enable successful diagnosis on the system means that either the reasoner

algorithm has to change, or the model has to change. The former would be most

desirable, but is beyond the scope of this thesis. Therefore, the model will be

changed, but this change should be justified.

In Scarl's work on the LES prototype, one of his assumptions (Chapter III,

page 35) was that his "full consistency algorithm" could handle systems where the
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sensor polling cycle is shorter than the behavior changes in the system. The satellite

pitch control channel is such a slow moving system. The closed-loop tests above show

that the change in the pitch error signal is very small over a one second time interval.

Consequent voltage changes through the rest of the system are also small over this

time period. This means that a snapshot of the system state could be taken, and the

diagnosis carried out over a one second period, without any serious loss of accuracy

caused by slowly changing values.

The real and model-world pitch channels were changed by removing the filters

in the WCE and the WDE, and treating them as simple amplifiers. This should

approximate the pitch control channel for the short time between sensor polls. The

structure of the new models is listed in files MPCHL2.S AND RPCHL2.S, in

Appendixes F and G respectively. Because of the nature of object oriented

programming, modifying the models was simple; the filters were removed by making

the WCEs and WDEs instances of AMPLIFIER, with the gains set to the DC values

calculated in Chapter V.

The closed-loop behavior of the system, without filters, was checked in the

same manner as done for the system that included the filters (at the start of this

chapter). It proved unstable! Instead of decaying, the pitch error signal oscillations

grew with time. Various gain settings for the WCE did not help. The results are in

Figure 26. The different gain values only changed the period of oscillation; the

higher the gain, the shorter the period. A significant observation: the instability

observed in the simulation without the filters, confirms that the difference equations

did provide the loop compensation necessary to null out the pitch error.

The program run for this configuration is listed at Appendix J. A "verbose"

version of a similar run, showing signal propagation detail, and the diagnostic

mechanism is shown in Appendix K.
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Figure 26 - Closed Loop Test - No Filters

The result: for almost all failure modes induced, the reasoner found the

culprits. For one case it listed two suspects as the possible cause, and when two

faults were induced, it detected the problem but could not come up with the culprits.

With reference to Appendix J, the first diagnose command is issued at line 10, and

the result returned is "The culprit is: M-EPE-A". The diagnose function uses the

model-world pitch channel system to carry out its reasoning, hence reports the model-

world EPE as being the culprit. This actually means that its the real-world

equivalent, i.e., the r-epe-a, is cause of the current fault condition.

Of particular note in the results are:

" Reconfiguration commands ((epe-b-on) at line 11) successfully remove fault

conditions (confirmation at line 13).

* Multiple faults could not be handled. This was expected since it was one of

Scarl's assumptions. At line 28, the r-wce-b was failed, and was correctly

diagnosed at line 30. Without reconfiguration or otherwise fixing this problem, the

r-wde-a was failed at line 31. Diagnoses at line 33 detected a problem, but failed

to find the cause.
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* An unexpected result: Setting a fault condition into the last component in the

system, r-wheel-a at line 38, resulted in a diagnosis of "The suspects are:

(M-WHEEL-SENSOR M-WHEEL-A)" at line 40. On closer analysis, this is the

correct result because the reasoner cannot eliminate the wheel's sensor, because

there are no further sensors down the line to help eliminate it as a suspect.

* Sensor failures are detected as easily as fault conditions in other components. At

line 44, the r-wce-sensor was failed. This is correctly diagnosed at line 46.

The above results are too good to be true. Are these valid result? The

problem is that the reasoner is diagnosing faults in a system (the real-world

simulation model) that is an exact copy of the computer model used by the reasoning

process; right down to the last decimal place! This is too unrealistic. A better test

would be to test the reasoner against a more realistic real-world simulation, but at

the same time, use a computer model (for the reasoner) that does not include time

dependent objects.

Resdts and Analysis - Combined Model

Testing the reasoner against a more realistic pitch channel simulation, yet not

include any time dependent objects in the computer model, was achieved by using the

designed real-world simulation model (i.e., with filters), and have the reasoner use the

model-world pitch channel without filters. This was implemented easily by loading

the model-world pitch channel (MPCHL2.S) on top of the already loaded designed-

model. In this way the model-world objects that included the filters were re-

instantiated to objects without filters.

The system was tested the same as before, with one exception. As before, the

pitch error signal is propagated through the system with each invocation of the sp

function. In this test, this function must be invoked several times to settle transients

created whenever the system state is changed. Multiple invocations are necessary
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because any abrupt change, such as the initial set-pitch function, or setting a failure

mode in one of the objects, is like injecting a step function into the system that the

filters cannot respond to instantaneously. This could be accommodated in an on-

board diagnostic system by having it read sensor data, at ten second intervals, several

times, before deciding that a sensor is discrepant. This would allow for the settling

of any transients brought on by a sudden change in the system due to an abrupt pitch

change (unlikely, unless the spacecraft was hit by a small meteorite), a malfunction,

or even a configuration change (this would definitely cause a transient).

The test results for the reasoner using this combined model is listed at

Appendix L. To save space, most of the sensor data generated by the sp function

have been edited out. The results are almost identical to that of the previous test

and show that the reasoner could detect and find the cause of all the faults induced.

But the listing shown at Appendix L is the final run. Some earlier program runs were

not so successful.

In the first program test run, the reasoner did not work at all. The problem

was traced to the sensor discrepancy test mechanism, namely the discrepant-sensor?

predicate in the DIAGNOSE.S file. It was comparing the real-world and model-

world sensors against too narrow a range of values. The problem was solved by

introducing a new variable for the sensor object called discrep-range, and setting its

value to a higher value, hence a broader range. On the unsuccessful first test run,

the tolerance variable in the sensor object was used as the range for testing sensor

discrepancy. This narrow range resulted in many discrepant sensor readings, and the

reasoner was attempting to diagnosed the system as though it had multiple faults.

In the previous "designed model" and "modified model" test runs, the problem did

not arise because the sensor values of the real-world sensors where identical to those

of the model-world sensors.
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The discrep-range value can be adjusted to give the desired results. If it is set

too low, the range will be too narrow, and the system will detect a fault but will be

unable to determine the cause; the same situation as just discussed. If it is set too

high, the range will be too wide and it may not detect a fault at all. A value between

one and five percent of the objects peak output swing (limit variable in the object)

seems to provide an operable range for the discrep-range variable. It is a realistic

range because tolerances given for typical electronic components fall in this range.

For the sensors in the MPCHL2.S file (Appendix F), the discrep-ranges were set to

1 for the WCE, WDE, and WHEEL; and, .05 for the ESA and EPE.

With these discrep-range values set, the test run at Appendix L confirms that

a model that contains no time dependant objects can be used to detect and isolate

faults in a system that does contain time dependant objects. This is a significant

result because it shows that the model used to diagnose faults in a real system does

not necessarily have to be an accurate representation of that real system.

Another important observation from this test run is that during all the

diagnosis activity, and even with the extra delay from the multiple sp invocations, the

satellite pitch angle (from the ESA) changes very little. Since every sp invocation

occurs once every second (imposed by the calculation of the pitch error angle in the

ESA, and the derivation of the difference equations in the filters), each line number

in the listing can represent a count in seconds. With reference to the listing, a fault

condition is set at line 13, the fault is diagnosed at line 23, a redundant system

switched in at line 24, and the system is back in working order at line 31. This

sequence took 18 seconds. During this time, even with the system broken, the pitch

error angle changed from 0.091 to 0.065 degrees. In this case, the change was

probably small because the failure mode induced into r-epe-a was the "zero volt out"

type. and so would not alter the speed of the reaction wheel. Another more extreme

case, is an r-wde-a that has its output latched down (output set to -25 volts) at line
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68. This would quickly drive the wheel to full deceleration. The fault is diagnosed

at line 74 and the redundant system switched in at line 75. The system is back to

normal at line 81. This took a total of 13 seconds, with the pitch error angle

changing from 0.123 to 0.132 degrees during that time. These short times (compared

to spacecraft's response to wheel speed changes) are significant because they include

the extra time required to allow for settling of transients caused by sudden fault

condition, and the switch-over to a redundant system.

The reasoner has been successful in detecting faults in the simulated pitch

control channel. The simulation appears to accurately represent the real system in

accordance with the specifications provided by the orbital operations handbook.

However, the pitch control channel is a slow moving system. Faster systems could

be accommodated by including the time variable, t, which was conveniently left out

in the calculations using the angular motion equations (ESA class), and in the

difference equations (WCE and WDE L-,asses). In both cases it was set to one

second. If the variable is included again, the time value could be set to some other,

smaller value, to enable diagnosis and sf's.;ii .ampling at a faster rate.

Although the reasoner was successful in this problem domain, it could do with

some imrrovement. One area for improvement is the setting of fault conditions into

the simulation model and the generation of fault hypotheses for the reasoner. A high

(or low) fault condition was set into the simulation by simply adding (or subtracting)

some fixed value to the object's output state. The reasoner hypothesized the fault

condition by adding (or subtracting) the same fixed value. The reasvner could be

improved by using symbolic values, such as "high", "low", and "ok", instead of (or

as well as) the numeric values. These symbolic values could then be propagated

through the system, and tested against the sensors of the real system. Of course, all

methods would have to be modified to accommodate this symbolic propagation, as

would the sensor discrepancy detection mechanism. Propagating symbolic data in this
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way is called "qualitative reasoning", and several references to this is made in papers

listed in the bibliography.

Summary

This chapter has documented the results and analyzed the performance of a

model-based reasoning paradigm used to detect faults in the pitch control channel of

the attitude and velocity control subsystem of a typical geo-stationary satellite.

Results and performance analysis of a computer model used to simulate the pitch

control channel was also presented. This model is a necessary part of the model-

based reasoning paradigm, but was also used to model a real system whose

components could be failed to enable testing of the diagnostic reasoner. The results

were presented in two steps.

First, the computer model used to simulate the pitch control channel was

tested. This closed loop test checked how an injected pitch error angle would

propagate through the system, accelerate the reaction wheel, and rotate the

spacecraft to null the error. This was a successful test as pitch decay time was

comparable to that specified in the orbital operations handbook.

Second, the model-based reasoner itself was tested. Three separate tests were

presented and analyzed. The first test using the designed model was unsuccessful.

The reasoner could not work from a model whose objects have state that are

dependent on time. The second test run was made using a modified model that

replaced the time dependent filter objects with simple amplifiers. The reasoner

worked perfectly with this model, but it was unrealistic to use such a model for the

real pitch channel simulation. The third test used the designed model (with filters)

for the real pitch channel simulation, and the modified model (without filters) for the

reasoner to work with. This test was successful.
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Two significant results came from the analysis. The first was that the model

used to diagnose faults in a real system does not necessarily have to be an accurate

representation of that real system. Second, the change in the pitch error signal,

during the time required to detect and correct for a faulty condition, is quite small.

This is important because an on-board diagnostic system of this type could quickly

recover from a faulty condition in the pitch control channel, without the satellites

communications system loosing a single bit of data due to antenna misalignment.

As with most software design projects, the process is usually iterative. This

thesis work was no exception. During the final testing phase, changes to the software

had to be quickly made to overcome problems encountered. This was made very

easy because of the nature of object oriented programming. New objects were

created effortlessly, as were the creation of new variables within objects. The Scheme

language itself shares the credit for this ease in programming and resulted in very

rapid prototyping.

Two improvements were suggested to enhance the operation of the reasoner.

The first improvement was to include the time variable in the equations of angular

motion, and in the difference equations. This would allow diagnosis of faster moving

system, by sampling the sensors at a faster rate. The second improvement suggested

the use of "qualitative" techniques to generate fault hypotheses. Symbolic values are

propagated through the model instead of numeric values. This would enhance sensor

discrepancy detection over a broader ra'nge of values.

A final note. Every effort has gone into making the computer '-imulation of

the pitch control channel as realistic as possible, but it is still a computer simulation.

This model-based reasoner, or any on-board diagnostic system should be validated

using real hardware.

114



VII. Conclusions and Recommendations

Introduction

This chapter summarized the thesis work, draws conclusions from what has

been found, and makes recommendations based on the analysis of the results.

Thesis Summary

Chapter II records a review of literature that looked at some current work

using Al techniques in the diagnosis of satellite anomalies. The examples given were

listed as prototypes, so it appears very few diagnostic systems are actually working in

an operational environment. From the literature reviewed, it appears that the

technique best suited for anomaly detection on an autonomous satellite is model-

based reasoning. Compared to other systems (such as rule-based expert systems) that

use knowledge about how a system fails, model-based reasoning uses knowledge

about the way a system works. This enables model-based reasoning to detect faults

not necessarily programmed into the knowledge base. On other AI systems, sensor

validation became an overwhelming part of their knowledge base. In model-based

reasoning, sensors are treated like any other components in the system, and need no

special attention.

Chapter III records a review of model-based reasoning techniques presented

by several authors. Davis's and Scar's work was discussed in some detail. Davis's

work was examined because it provided a good basis for the understanding of the

model-based reasoning paradigm. Scarl's work was examined in detail because it

was applied to a process control system that has many sensors, and had potential for

use on a satellite's subsystem.

115



Chapter IV presented a part of a satellite subsystem that can be modelled for

use in an automatic fault detection system employing model-based reasoning. The

attitude velocity control subsystem (AVCS) of a typical geo-stationary satellite was

selected to be the subsystem for experimentation. An overview of the function of the

AVCS was given, but due to complexity, only the pitch channel of the AVCS was

presented in enough detail to enable computer modelling for the model-based

reasoner to operate on.

Chapter V presented all aspects of software development using a model-based

reasoning paradigm for fault detection in the pitch control channel of a satellite's

attitude control subsystem. The chapter addressed language selection and why the

Scheme language was chosen over other languages. The chapter described the

development of the objects used in the simulation, and the interconnection of the

objects that form the simulated pitch control channel. The chapter also described the

algorithm used in the diagnosis process.

Chapter VI documented the results and analysis of the designed model-based

reasoning paradigm used to detect faults in the pitch control channel. The results

were presented in two steps. The first presented results for the pitch control channel

model, used by the reasoner, and as a simulation for a real system. The second,

presented the results of the operation of the reasoner itself.

Conclusions

Conclusions drawn from this thesis work are listed as follows:

* Fully operational AI techniques used for the detection of anomalies in satellites

are virtually non-existent. However, many prototype systems have been

developed.
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* The model-based reasoning paradigm promises a viable alternative to more

traditional rule-based design for fault detection because it is capable of detecting

faults that are not programmed into the knowledge base. This is particularly

important for an autonomous satellite.

* Scarl's "full consistency algorithm" seems well suited for detection of faults in a

satellite because the domain is similar to a process control system that has many

sensors.

* The pitch control channel of the attitude and velocity control subsystem provides

a good vehicle for testing the operation of a model-based reasoning fault detection

system.

* The Scheme language, with its SCOOPS object oriented extension, provided fast

prototyping of the pitch control channel model, and the reasoning software. The

OOP structure of the language also enabled changes to be made very quickly to

the software when problems were encountered.

* Based on data in the Orbital Operations Handbook, the model of the pitch

control channel, provided a good simulation of the real system.

* Scarl's algorithm does not work with a model that uses feedback. The pitch

control channel is a system with feedback, but the problem was eliminated by

breaking the loop in the model used by the reasoner to detect the fault. The loop

was not broken in the model used to simulate the real pitch control channel.

* Scarl's algorithm does not work with a model that uses objects whose state is

dependent on time. This problem was overcome by modifying time dependent

objects, in the model used by the reasoner, to be non-time dependent.

* The model used by the reasoner to diagnose faults does not necessarily have to

be an accurate representation of the real system. In this thesis, the reasoner

diagnosed from a model that had objects whose state were not dependent on time,
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but successfully detected faults in a computer simulation model that used objects

with state that were dependent on time. This should be extendible to application

of the reasoner against a real hardware system that uses components, such as

filters, that are time dependent.

0 The change in the pitch error signal, during the time required to detect and

correct for a faulty condition, is small. This is important because an on-board

diagnostic system of this type could quickly recover from a faulty condition in the

pitch control channel, without the satellites communications system loosing a

single bit of data due to antenna misalignment.

Recommendations

Culminating from this thesis work, and from the conclusions listed above, the

following recommendations are made.

* Validation of the software was carried out against a computer simulation of the

pitch control channel because hardware and telemetry tapes were not available.

For true validation, the software should be checked against hardware or at a very

minimum, against an operating satellite using sensor data from telemetry tapes.

" Scarl's algorithm does not work with a model that has objects whose state is

dependent on time. In this thesis, the problem was circumvented by modifying the

time dependent objects to become non-time dependent. Fortunately, in this case,

fault detection was still achievable, but this may not be the case for other, more

complex, time dependent systems. Further research should be applied to

algorithms that use the model-based paradigm with models that are time

dependent.

* Another limitation with Scarl's algorithm, is that it does not handle feedback.

Most satellite systems are control systems and are dependent on feedback for
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their operation. In this thesis, the feedback problem was eliminated by breaking

the loop, just as a technician does. This was successful for this relatively simple

case, but other systems may require the loop to be closed, or may have loops

within loops which must be modelled. Further research should be applied to

models and algorithms that use the model-based paradigm to better handle

feedback.

* The reasoner should be enhanced as suggested in the last chapter. The sample

time variable should be included in difference equations and the equations of

motion. This would allow diagnosis of faster moving systems. Qualitative

techniques should be employed to generate fault hypotheses. This would enhance

sensor discrepancy detection over a broader range of values.

* Fully autonomous satellite operation is in the distant future. This thesis has

touched on a small part of making the transition to autonomy in the domain of

satellite fault management. Work should continue in this area of automated fault

detection and recovery, using the model-based reasoning paradigm. As this thesis

has shown, this paradigm promises to be a very viable option.
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Appendix A: Class Definition File Listing

;;; File: PDEF.S
;;;

AFIT/GSO/ENG/90D-03 THESIS
;;;

;;; MODEL BASED REASONING IN THE DETECTION OF SATELLITE ANOMALIES
;;;

;;; BY FLTLT RALPH W. DRIES
;;;

DECEMBER 1990
;;;

;;; DESCRIPTION
;;;

;;; This file includes all the class definitions for objects
in the pitch control channel.

;;;

COMPONENT (class)
;;; This is the highest level object. Other objects inherit instance
;;; variable defined here. The STATE variable is only changed by the

deposit-value method. This method causes the change to recursively
propogate through the system, starting with the connected components

;;; declared in the OUTPUT-LIST.

(define-class COMPONENT
(instvars
name
(status 'on)
(state 0)
(input-list "())
(output-list "() )

(options
gettable-variables
settable-variables
inittable-variables ))

(compile-class COMPONENT)

,; DEPOSIT-VALUE (method of class COMPONENT)
;; This method deposits a value as the state of the component and then

updates the downstream-components for which the component is an input.
,; This is done by calling the UPDATE method.

(define-method (COMPONENT deposit-value)
(value)

;;;debug;;;(writeln "Change " name " to " value ".")

(sett state value)
(tell-other output-list)

(define (tell-other output-list)
(cond

(null? output-list)
nil

120



(else
(send (eval (car output-list)) update)
(tell-other (cdr output-list)) )))

:::::::::::::::::::::::::::::::::::::::::::::I::::::::::::g:::::::::::

AMPLIFIER (class)
;; This very simple amplifier has 1 inputs and 1 output, a gain, output
;; swing limits and a tolerance, that update checks against to prevent
;; endless looping in a feedback circuit.

(define-class AMPLIFIER
(instvars
gain
limit
(tolerance 0.01)
(fault-list "(high low zero latchup latchdown))

(mixins COMPONENT)
(options
gettable-variables
settable-variables
inittable-variables ))

(compile-class AMPLIFIER)

;;; UPDATE (method for class AMPLIFIER)
;;;

;;; calls: amp-state
;;;

;;; called by: deposit-value

(define-method (AMPLIFIER update)
()
(case status
( 'on (let ( (vo (amp-state))

(if (number? vo)
(deposit-value vo)
nil )))

( 'off (deposit-value nil)
( 'latchup (deposit-value limit)
( 'latchdown (deposit-value (* limit -1))
( 'zero (deposit-value 0) )
( 'high (let ( (vo (amp-state))

(if (number? vo)
(deposit-value

(let ( (hi-val (+ vo 5))
(if (>? hi-val limit)

limit
hi-val )))

(deposit-value
(let ( (val (+ state 5)) )

(if (>? val limit)
limit
val ))))))

( 'low (let ( (vo (amp-state))
(if (number? vo)

(deposit-value
(let ( (lo-limit (*limit -1))

(lo-val (- vo 5)) )
(if (<? lo-val lo-limit)

lo-limit
lo-val )))

(deposit-value
(let ( (val (- state 5))

(if (<? val (* limit -1))
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(* limit -1)
val ))))))

(else (writeln "*** ERROR: Invalid status: " status)) ))

AMP-STATE (method for class AMPLIFIER)
;;; Determines the output state from the inputs
;;;

;;; returns: new output state of AMPLIFIER
;;;

;;; calls: in-range?
;;;

;;; called by: update

(define-method (AMPLIFIER amp-state)
()
(let ( (vi (send (eval (car input-list)) get-state))

(if (null? vi)
nil
(let ( (vo (* gain vi))

(upper-rail limit)
(lower-rail (* limit -1))

(cond ( (or (in-range? state vo tolerance)
(and (>? vo upper-rail)

(equal? state upper-rail)
(and (<? vo lower-rail)

(equal? state lower-rail) ))
nil-

cond
( (>? vo upper-rail)
upper-rail )

( (<? vo lower-rail)
lower-rail

(elsevo ))))))))

;; IN-RANGE? (general function)
;; is true if v2 falls in the range of vl. The width of the
;; range is determined by the tolerance tol.
;; i.e. vl - tol < v2 < vl + tol
;; vl and v2 are first tested for null. If either is null, this proc returns
;; false to ensure the state is updated the first time through.

(define (in-range? vl v2 tol)
(if (or (null? vl) (null? v2))#F

(let ( (upper (+ vl tol))
(lower (- vl tol))

(if (and (<? v2 upper) (>? v2 lower))
#T
#F ))))

;; ESA (class)
;; This class defines the Earth Sensor Assembly. In reality, the input is
;; the rotation of the spacecraft about the pitch (Y-axis). In this case
;; the input comes from the wheel acceleration (alpha-wheel) which is in
;; the range of ±34.66 rpm/s. Using the ratio of the moment of inertia
;; of the satellite to the moment of inertia of the wheel, the angular
;; acceleration (alpha-sat) of the satellite can be determined. The gain is
;; the ratio of the moment of inertia of the wheel to that of the satellite.
;; The instantaneous angular velocity (omega) of the satellite is calculated
;; from the acceleration, and the change in pitch error angle is calculated
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;; from the angular velocity. The output state is the new pitch error angle.
;; The time unit used for the calculations is one second. This assumes each
;; transition through the pitch control loop simulation takes one second.

(define-class ESA
(instvars

(gain (/ 1 283505))
(omega 0)
(limit 5)

(mixins AMPLIFIER)
(options
gettable-variables
settable-variables
inittable-variables ))

(compile-class ESA)

;;; AMP-STATE (method for class ESA)
,;; Determines the output state from the input.
;;;

,;; returns: new output state of ESA
';;

;;; calls: in-range?
;;;

;;; called by: update

(define-method (ESA amp-state)
()
(let* ( (alpha-wheel (send (eval (car input-list)) get-state)) )

(if (null? alpha-wheel)
nil
(let* ( (alpha-sat (* gain alpha-wheel))

(omega-new (+ omega alpha-sat))
(theta (- state (* (+ omega (/ alpha-sat 2)) 5.73)))
(upper-rail limit)
(lower-rail (* limit -1))

(set! omega omega-new)
;;;debug;;; (writeln)
;;;debug;;; (writeln "omega=" omega)
;;;debug;;; (writeln theta " " omega
;;;debug;;; (writeln "a-wheel=" alpha-wheel)
;;;debug;;; (writeln "a-sat=" alpha-sat)
;;;debug;;; (writeln)

(cond ( (and (in-range? 0 theta tolerance)
(in-range? 0 omega (/ tolerance 100))

nil
(else

(cond
( (>? theta upper-rail)
upper-rail )

( (<? theta lower-rail)
lower-rail

(else
theta ))))))))

;; EPE (class)
;; This is the Earth Processing Electronics class. It is a decendant of
;; the AMPLIFIER, and inherits all methods and characteristics of the
;; the AMPLIFIER. Essentially, the EPE is a digital to analog converter (DAC)
;; which converts the digital angle information from the earth sensor to
;; a voltage used be the following wheel control electronics. The gain
;; here is the transfer function of the DAC and equals 0.976 volts/deg.
;; The output limits are ±5V.
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(define-class EPE
(instvars

(gain 0.976)
(limit 5)
(tolerance 0.0001)

(mixins AMPLIFIER)
(options
gettable-variables
settable-variables
inittable-variables ))

(compile-class EPE)

;; WCE (class)
;; This is the class definition for the Wheel Control Electronics. It is
;; a decendant of COMPONENT and inherits all its variables and methods.
;; The WCE is an amplifier and loop compensating filter that ensure correct
;; damping for the pitch channel control system. The filter is modelled
;; using a difference equation. It uses past history of the input and the
;; output. Xn is the current input, Xn-l is the previous input. Yn is the
;; current output (determined from the difference eqn), Yn-1 the previous
;; output and Yn-2 the output before that.
;; The output limits are ±15V.

(define-class WCE
(instvars

(gain -17.75)
(Xn-1 0)
(Yn-1 0)
(Yn-2 0)
(limit 25)
(tolerance 0.0001)

(mixins AMPLIFIER)
(options
gettable-variables
settable-variables
inittable-variables ))

(compile-class WCE)

AMP-STATE (method for class WCE)
;;; Determines the output state from the inputs
;,;

;,; returns: new output state of WCE
I,;

;,; calls: in-range?
'I;

•;; called by: update

(define-method (WCE amp-state)
()
(let ( (Xn (send (eval (car input-list)) get-state))

(if (null? Xn)
nil
(let* ( (Yn (+ (* 2.56 Xn) (* -2.4 Xn-1) (* 1.2 Yn-1) (* -0.36 Yn-2)))

(vo (* gain Yn))
(upper-rail limit)
(lower-rail (* limit -1))

(set! Yn-2 Yn-1)
(set! Yn-1 Yn)
(set! Xn-1 Xn)
(cond ( (or (in-range? state vo tolerance)

(and (>? vo upper-rail)
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(equal? state upper-rail)
(and (<? vo lower-rail)

(equal? state lower-rail) ))
nil

(else
(cond
( (>? vo upper-rail)
upper-rail )

( (<? vo lower-rail)
lower-rail

(else
vo

;; WDE (class)
;; This is the Wheel Drive Electronics class. It is a decendant of

AMPLIFIER, and inherits all methods and characteristics of AMPLIFIER.
;; The WDE is an amplifier that provides the correct drive
;; to accelerate or decelerate the reaction wheel, and to ensure correct
;; damping for the pitch channel control system.
;; Here, the WDE is modelled as a simple amplifier, with a gain determined
;; from DC transfer characteristics of the amplifier.
;; The output limits are ±25V.

(define-class WDE
(instvars

(gain 1)
(limit 25)
(Xn-i 0)
(Yn-l 0)
(tolerance 0.0001)

(mixins AMPLIFIER)
(options
gettable-variables
settable-variables
inittable-variables ))

(compile-class WDE)

AMP-STATE (method for class WDE)
;;; Determines the output state from the inputs
;;;

;;; returns: new output state of WDE
;;;

;;; calls: in-range?
;;;

;;; called by: update

(define-method (WDE amp-state)
()
(let ( (Xn (send (eval (car input-list)) get-state))

(if (null? Xn)
nil
(let* ( (Yn (/ (+ (* 4.83 Xn) (* -3.83 Xn-1) (* 3.83 *ALPHA* Yn-l))

(+ (* 3.83 *ALPHA*) 1) ))
(vo (* gain Yn))
(upper-rail limit)
(lower-rail (* limit -1))

(setl Yn-l Yn)
(setl Xn-i Xn)
(cond ( (or (in-range? state vo tolerance)

(and (>? vo upper-rail)
(equal? state upper-rail)

(and (<? vo lower-rail)
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(equal? state lower-rail) ))
nil)

(else
(cond
( (>? vo upper-rail)
upper-rail )

( (<? vo lower-rail)
lower-rail

(else
Vo ))))))))

;;; global variable *ALPHA* definition;;;;;;;;;;;;;;;;
(define *A PHA* 1.7)

;; WHEY (class)
;; This class defines the reaction wheel. tf is the transfer function.
;; Input Voltage range is ±25V and output change in rpm is 1.386 rpm/s/volt.
;; State is the acceleration rpm/s, used to speed up or slow down the wheel.
;; This pitches the spacecraft.
;; Delta-rpm keeps the actual deviation of rpm from the 3000 rpm nominal.

(define-class wheel
(instvars

(gain -1.386)
(delta-rpm 0)
(limit 35)
(tolerance 0.0001)

(mixins AMPLIFIER)
(options
gettable-variables
settable-variables
inittable-variables ))

(compile-class wheel)

;;; WHEEL-STATE (method for class WHEEL)
;;; Determines the output state from the input
;;;

;;; returns: new output state of wheel
;;;

;;; calls: in-range?
;;;

;;; called by: update

(define-method (WHEEL amp-3tate)
()
(let* ( (vin (send (eval (car input-list)) get-state))

(if (null? vin)
nil
(let ( (alpha-wheel (* gain vin))

(upper-rail limit)
(lower-rail (* limit -1))

(cond ( (or (in-range? state alpha-wheel tolerance)
(and (>? alpha-wheel upper-rail)

(equal? state upper-rail) )
(and (<? alpha-wheel lower-rail)

(equal? state lower-rail) ))
nil

(else
(cond

(>? alpha-wheel upper-rail)
(setl delta-rpm (+ delta-rpm upper-rail))
upper-rail
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(<? alpha-wheel lower-rail)
(setl delta-rpm (+ delta-rpm lower-rail))
lower-rail

(else
(set! delta-rpm (+ delta-rpm alpha-wheel))
alpha-wheel ))))))))

;; SENSOR (class)
;; Each SENSOR has an input and no components connected.
;; The output state is equal to the input value. A list of upstream
;; components is used as the set of suspects to check following
;; discrepant sensor detection. This saves building a list of suspects
;; from the structure and functional discriptions in each object. This
;; list must be changed following reconfiguration. The limit value is
;; arbitrary, but could reflect a limit on a real on-board sensor.
;; The discrep-range value is used by the diagnoser to test
;; against a range when checking for discrepant sensors. The default
;; tolerance is set to 0.5 volts

(define-class SENSOR
(instvars
upstream-components
(gain 1)
(limit 100)
(discrep-range 0.5)
(tolerance 0.001)

(mixins AMPLIFIER)
(options
gettable-variables
settable-variables
inittable-variables ))

(compile-class SENSOR)

;; COMMAND (class)
;; Each COMMAND has an output state only. All instance variables
;; for this component are inherited from COMPONENT

(define-class COMMAND
(mixins COMPONENT)
(options
gettable-variables
settable-variables
inittable-variables ))

(compile-class COMMAND)
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Appendix B: Model Pitch Channel Listing

;;; File: MPCHL.S
;;;

,; AFIT/GSO/ENG/90D-03 THESIS
;;;

;;; MODEL BASED REASONING IN THE DETECTION OF SATELLITE ANOMALIES
;,;

;;; BY FLTLT RALPH W. DRIES
;,;

,; DECEMBER 1990
;,;

;;DESCRIPTION

;;; This file defines the structure, instances, and describes
;;; system interconnection for the Model pitch channel.
;;;

;;; Primary A components

(define m-esa-a
(make-instance ESA

'name 'm-esa-a
'output-list "(m-esa-sensor)
'input-list '(m-wheel-a) ))

(define m-epe-a
(make-instance EPE

'name 'm-epe-a
'output-list '(m-wce-a m-epe-sensor)
'input-list '(command-l) ))

(define m-wce-a
(make-instance WCE

'name 'm-wce-a
'output-list '(m-wde-a m-wce-sensor)
'input-list "(m-epe-a) ))

(define m-wde-a
(make-instance WDE

'name "m-wde-a
'output-list '(m-wheel-a m-wde-sensor)
'input-list '(m-wce-a) ))

(define m-wheel-a
(make-instance WHEEL

'name 'im-wheel-a
'output-list '(m-esa-a m-wheel-sensor)
'input-list '(m-wde-a) ))
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;;; Redundant B components
;;; On startup, all are powered off, (status = off), and inputs
;;; and outputs are connected to primary A components.

(define m-esa-b
(make-instance ESA

'name •m-esa-b
'status 'off
'output-list '(m-esa-sensor)
'input-list '(m-wheel-a) ))

(define m-epe-b
(make-instance EPE

'name "m-epe-b
'status 'off
'output-list '(m-wce-a m-epe-sensor)
'input-list '(command-i) ))

(define m-wce-b
(make-instance WCE

'name •rm-wce-b
'status 'off
'output-list "(m-wde-a m-wce-sensor)
'input-list '(m-epe-a) ))

(define m-wde-b
(make-instance WDE

'name 'm-wde-b
•status 'off
'output-list '(m-wheel-a m-wde-sensor)• input-liat 1(m-wce-a) )

(define m-wheel-b
(make-instance WHEEL

'name 'm-wheel-b
'status 'off
'output-list '(m-esa-a m-wheel-sensor)
'input-list '(m-wde-a) ))

;;; SENSORS (components, i.e., instance of SENSOR)
;;; The following defines the sensors connected to the output of
;;; gates in the circuit.

(define m-esa-sensor
(make-instance SENSOR

'name 'm-esa-sensor
'upstream-components '(m-esa-sensor m-esa-a m-wheel-a m-wde-a m-wce-a

m-epe-a)
'discrep-range .05
'input-list "(m-esa-a) ))

(define m-epe-sensor
(make-instance SENSOR

'name "m-epe-sensor
'upstream-components '(m-epe-sensor m-epe-a)
'discrep-range .05
'input-list '(m-epe-a) ))

(define m-wce-sensor
(make-instance SENSOR

'name "m-wce-sensor
'upstream-components '(m-wce-sensor m-wce-a m-epe-a)
'input-list '(m-wce-a) ))

129



(define m-wde-sensor
(make-instance SENSOR

'name 'm-wde-sensor
'upstream-components '(m-wde-sensor m-wde-a m-wce-a m-epe-a)
'input-list '(m-wde-a) ))

(define m-wheel-sensor
(make-instance SENSOR

'name 'm-wheel-sensor
'upstream-components '(m-wheel-sensor m-wheel-a m-wde-a m-wce-a m-epe-a)
'input-list '(m-wheel-a) ))
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Appendix C: Real Pitch Channel Listing

;;; File: RPCHL.S
;;;

;;; AFIT/GSO/ENG/90D-03 THESIS
;;;

;;; MODEL BASED REASONING IN THE DETECTION OF SATELLITE ANOMALIES
;;;

;;; BY FLTLT RALPH W. DRIES
;;;

;;; DECEMBER 1990
;;;
I:IS::I::g::::ggg::::I:::g:I::::::i:/:::::::::i:::::::,I::::::g:::g:::

,;DESCRIPTION

;;; This file defines the structure, instances and describes the
;;; structure of the Real pitch channel.
;;;

;; Primary A components

(define r-esa-a
(make-instance ESA

' name 'r-esa-a
'output-list '(r-esa-sensor)
'input-list '(r-wheel-a) ))

(define r-epe-a
(make-instance EPE

' name "r-epe-a
'output-list "(r-wce-a r-epe-sensor)
'input-list '(command-i) ))

(define r-wce-a
(make-instance WCE

' name "r-wce-a
'output-list '(r-wde-a r-wce-sensor)
'input-list '(r-epe-a) ))

(define r-wde-a
(make-instance WDE

'name 'r-wde-a
'output-list '(r-wheel-a r-wde-sensor)
'input-list '(r-wce-a) ))

(define r-wheel-a
(make-instance WHEEL

'name "r-wheel-a
'output-list "(r-esa-a r-wheel-sensor)
'input-list '(r-wde-a) ))

;;; Redundant B components
;;; On startup, all are powered off, (status off), and inputs
,,; and outputs are connected to primary A components.
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(define r-esa-b
(make-instance ESA

'name 'r-esa-b
'status "off
'output-list '(r-esa-sensor)
'input-list '(r-wheel-a) ))

(define r-epe-b
(make-instance EPE

'name "r-epe-b
'status 'off
'output-list '(r-wce-a r-epe-sensor)
'input-list '(command-i) ))

(define r-wce-b
(make-instance WCE

' name 'r-wce-b
'status 'off
'output-list '(r-wde-a r-wce-sensor)
'input-list '(r-epe-a) ))

(define r-wde-b
(make-instance WDE

'name •r-wde-b
'status 'off
'output-list '(r-wheel-a r-wde-sensor)
'input-list '(r-wce-a) ))

(define r-wheel-b
(make-instance WHEEL

'name "r-wheel-b
'status 'off
'output-list '(r-esa-a r-wheel-sensor)
'input-list '(r-wde-a) ))

;;; SENSORS (components, i.e., instance of SENSOR)
;;; The following defines the sensors connected to the output of
;;; gates in the circuit.

(define r-esa-sensor
(make-instance SENSOR

'name 'r-esa-sensor
'input-list '(r-esa-a) ))

(define r-epe-sensor
(make-instance SENSOR

'name "r-epe-sensor
'input-list '(r-epe-a) ))

(define r-wce-sensor
(make-instance SENSOR

'name 'r-wce-sensor
'input-list '(r-wce-a) ))

(define r-wde-sensor
(make-instance SENSOR

'name 'r-wde-sensor
'input-list '(r-wde-a) ))

(define r-wheel-sensor
(make-instance SENSOR

'name 'r-wheel-sensor
'input-list '(r-wheel-a) ))
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Appendix D: Pitch Control File Listing

,;; File: PCONTROL.S
',

,;; AFIT/GSO/ENG/90D-03 THESIS
,;;

,;; MODEL BASED REASONING IN THE DETECTION OF SATELLITE ANOMALIES

,,; BY FLTLT RALPH W. DRIES

;; DECEMBER 1990

;;; DESCRIPTION
;;;

;;; This file includes all the commands and functions that control
,;; both the real and model pitch control channels
';;

;;; COMMANDS (components, i.e., instance of COMMAND)
;;; The following defines the command that initiates a state in
;;; components in the real and model worlds to start the simulation.

(define command-1
(make-instance command

'name 'command-1
'output-list '(m-epe-a m-epe-b r-epe-a r-epe-b) ))

;;; SET-PITCH (set-pitch p)
;,; This function sets a known pitch error signal, p, into the
;;; state of both model and real ESAs.
;;; This initiates a pitch error for the pitch control channel to
;;; operate on. It calls the sp function to propogate the pitch
;;; error through the system.

(define (set-pitch p)
(send m-esa-a set-state p)
(send r-esa-a set-state p)
(sp) )

;;; SP (sp)
;;; This function takes the output of the r-ESA-a and put it into
;;; the EPEs via command-1. When propogation of the signal ceases, all
;;; sensor data is printed out.

(define (sp)
(send command-1 deposit-value (send r-esa-a get-state))
(writeln)
(writeln "Model EPE-Sensor = " (send m-epe-sensor get-state))
(writeln "Model WCE-Sensor = " (send m-wce-sensor get-state))
(writeln "Model WDE-Sensor = " (send m-wde-sensor get-state))
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(writeln "Model Wheel-Sensor = " (send m-wheel-sensor get-state))
(writeln " wheel delta-rpm = " (send m-wheel-a get-delta-rpm))
(writeln "Model ESA-Sensor = . (send m-esa-sensor get-state))
(writeln " esa omega = " (send m-esa-a get-omega))
(writeln)
(writeln "Real EPE-Sensor = " (send r-epe-sensor get-state))
(writeln "Real WCE-Sensor = " (send r-wce-sensor get-state))
(writeln "Real WDE-Sensor = " (send r-wde-sensor get-state))
(writeln "Real Wheel-Sensor = " (send r-wheel-sensor get-state))
(writeln " wheel delta-rpm = " (send r-wheel-a get-delta-rpm))
(writeln "Real ESA Sensor = " (send r-esa-sensor get-state))
(writeln " esa omega = " (send r-esa-a get-omega))
(writeln)
,done )

(define (iter)
(send command-1 deposit-value (send m-esa-a get-state))

;;; GET-REAL-SENSOR (get-real-sensor sensor)
;;; This function returns the real world sensor equivalent of the
;;; model sensor. If more sensors are added to the circuit,
;;; they must be added here.

(define (get-real-sensor sensor)
(case sensor

(m-epe-sensor r-epe-sensor)
(m-wce-sensor r-wce-sensor)
(m-wde-sensor r-wde-sensor)
(m-wheel-sensor r-wheel-sensor)
(else 'error) ))

;; ALL-SENSORS
;;; This function defines all the sensors required by the reasoner.
;;; The reasoner only works the the model sensors. The addition
;;; of any more sensors to the system must be added here.

(define all-sensors
'(m-epe-sensor m-wce-sensor m-wde-sensor m-wheel-sensor)

;; ALL-COMPONENTS
;;; This function defines all the components in the system. The list is
;;; used by the reconfiguration commands to change attributes inside the
;;; objects when ever the system is reconfigured. That is, components
;;; will have different components connected to their inputs and outputs.

(define all-real-components
•(r-esa-a r-esa-b r-epe-a r-epe-b r-wce-a r-wce-b
r-wde-a r-wde-b r-wheel-a r-wheel-b
r-esa-sensor r-epe-sensor r-wce-sensor
r-wde-sensor r-wheel-sensor ))

(define all-model-components
•(m-esa-a m-esa-b m-epe-a m-epe-b m-wce-a m-wce-b
m-wde-a m-wde-b m-wheel-a m-wheel-b
m-esa-sensor m-epe-sensor m-wce-sensor
m-wde-sensor m-wheel-sensor command-1 ))

(define all-components
(append all-model-components all-real-components)

;;; POWER-ON configuration
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The following set of power-on commands, change the configuration of
the pitch control channel. For example, EPE-A-ON will power-on R-EPE-A,
power-off R-EPE-B, change the input of the next stage (R-WCE-A and R-WCE-B)

;;; to take input from R-EPE-A, and change the output-list list to
;;; include R-EPE-A as connected.

:::::::::::::::::::::::, ::::, ::::, :: , earth sensor assembly
(define (esa-a-on)

(reconfigure all-real-components "r-esa-b "r-esa-a)
(reconfigure all-model-components "m-esa-b 'm-esa-a) )

(define (esa-b-on)
(reconfigure all-real-components 'r-esa-a 'r-esa-b)
(reconfigure all-model-components 'm-esa-a "m-esa-b) )

,,::,:,,,:,,:,:,,:,:,,::,:,,::,,,,,;: earth processing electronics
(define (epe-a-on)

(reconfigure all-real-components 'r-epe-b 'r-epe-a)
(reconfigure all-model-components "m-epe-b "m-epe-a) )

(define (epe-b-on)
(reconfigure all-real-components "r-epe-a 'r-epe-b)
(reconfigure all-model-components 'm-epe-a 'm-epe-b) )

,::::::::::::::::::::::::::::::::::: , wheel control electronics
(define (wce-a-on)

(reconfigure all-real-components 'r-wce-b 'r-wce-a)
(reconfigure all-model-components 'm-wce-b "m-wce-a) )

(define (wce-b-on)
(reconfigure all-real-components 'r-wce-a 'r-wce-b)
(reconfigure all-model-components 'm-wce-a "m-wce-b) )

::,:,:: ,:,:,:,:,:::::::::: , , ; ; wheel drive electronics
(define (wde-a-on)

(reconfigure all-real-components "r-wde-b "r-wde-a)
(reconfigure all-model-components "m-wde-b "m-wde-a) )

(define (wde-b-on)
(reconfigure all-real-components 'r-wde-a 'r-wde-b)
(reconfigure all-model-components "m-wde-a "m-wde-b) )

,,,,:,::,,,:,:,,,,,,:,:,,,,,,,,,,,,;; reaction wheel assembly
(define (wheel-a-on)

(reconfigure all-real-components 'r-wheel-b 'r-wheel-a)
(reconfigure all-model-components 'im-wheel-b 'm-wheel-a) )

(define (wheel-b-on)
(reconfigure all-real-components "r-wheel-a 'r-wheel-b)
(reconfigure all-model-components "m-wheel-a 'im-wheel-b)

RECONFIGURE (reconfigure component-list from-item to-item)
This function changes the configuration of the pitch control channel.

;;; The primary (A) and secondary (B) components are mutually exclusive.
;,; When one is switched on, the other is automatically switched off.
;,; This function goes through all the components in the pitch channel

and adjusts the input and output lists of each component, to make sure
,; it is connected to a switched "ON" component.
;,;

;,; called by: esa-a-on, esa-b-on, epe-a-on, epe-b-on,.... etc.
;;;

;,; calls: config
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(define (reconfigure component-list from-item to-item)
(send (eval to-item) set-status 'on)
(send (eval from-item) set-status 'off)
(config component-list from-item to-item)

(define (config component-list from-item to-item)
(cond ( (null? component-list)

nil
(else

(fixit (car component-list) from-item to-item)
(config (cdr component-list) from-item to-item) )))

(define (fixit component from-item to-item)
(let ( (i-lst (send (eval component) get-input-list))

(o-lst (send (eval component) get-output-list))
(if (null? i-lst)

nil
(send (eval component) set-input-list

(replace from-item to-item i-lst) ))
(if (null? o-lst)

nil
(send (eval component) set-output-list

(replace from-item to-item o-lst) )))
(if (member component all-sensors)

(send (eval component) set-upstream-components
(replace from-item to-item

(send (eval component) get-upstream-components) ))
nil ))

(define (replace from-item to-item 1st)
(cond ( (null? 1st)

nil )
( (equal? (car ist) from-item)

(cons to-item (cdr 1st))
(else

(cons (car 1st) (replace from-item to-item (cdr 1st))) )))

;;; RESET-SYSTEM (reset-system)
;;; This function resets the state variable of all objects to 0. It also
;;; sets other variables, such as yn, yn-l etc. to 0. The easiest way to
;;; reset all the objects is to re-instantiate the objects by reloading
;;; the structure files: mpchl.s and rpchl.s. mpchl2.s and rpchl2.s have
;;; their components modelled as simple amplifiers (no filters).
I;;

,;; calls: reset-state, reset-wce, reset-wde
;;;

;;; called by: user

(define (reset-system)
(load "mpchl.s")
(load "rpchl.s")

(define (reset-system2)
(load "mpchl2.s")
(load "rpchl2.s")

SET-TOLERANCE (set-tolerance tol)
;;; This function sets the tolerance in each object to tol.
;;;

(define (set-tolerance tol)
(set-tol all-components tol)
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(define (set-tol lst tol)
(if (null? lst)

nil
(cond ( (equal? (car lst) 'command-i)

(set-tol (cdr 1st) tol)
(else

(send (eval (car 1st)) set-tolerance tol)
(set-tol (cdr 1st) tol) ))))

;;; TEST-LOOP (tesp-loop p)
;;; This function effectively closes the pitch control channel loop
;;; so that loop behavior can be examined.

The system is reset to initial conditions, and the tolerance set
;;; to a very small value to ensure all objects continue to pass on their
;;; state.
;;; Once setup, the run-test function is called to loop by passing esa
;;; state value on to the epe via command-i.

(define (test-loop p)
(reset-system2)
(set-tolerance .00000001)
(send m-esa-a deposit-value p)
(writeln)
(writeln (send m-esa-sensor get-state)
(run-test) )

(define (run-test)
(send command-I deposit-value (send m-esa-a get-state))
(writeln (send m-esa-sensor get-state)
(run-test)

DESCRIBE-ALL (describe-all 1st)
;;; This function recursively calls the SCOOPS describe function to

print out all instances of object in 1st.

(define (describe-all lst)
(cond ( (null? lst)

nil
(else

(describe (eval (car 1st)))
(describe-all (cdr 1st)) )))
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Appendix E: Model-Based Reasoner Listing

File: DIAGNOSE.S
;,;

AFIT/GSO/ENG/90D-03 THESIS
;;;

,; MODEL BASED REASONING IN THE DETECTION OF SATELLITE ANOMALIES
;;;

;;; BY FLTLT RALPH W. DRIES
;;;

DECEMBER 1990
;;;

;;; DESCRIPTION
;;;

;;; This file defines the model-based reasoner.
;;;

;;; DIAGNOSE
;;; This procedure does the diagnosis.
;;;

The following algorithm is based on Scarl's Full Consistency Algorithm
;;;

Algorithm:
find a discrepent sensor
if none found then

no fault in circuit
else

collect all components structurally upstream from
discrepent sensor and put into suspect list

repeat for each suspect
repeat for each fault hypothesis

hypothesize a fault for the suspect
propogate change through the model
test all sensors for consistency
if sensors consistent then

leave suspect in suspect list
else

clear hypothetical fault (not suspect)
end-repeat faults
if all faults are ruled out then

clear suspect
end-repeat suspects
if one suspect remains then

print out the culprit
;;; else

print out the list of suspects remaining

(define (diagnose)
(let ( (bad-sensor (get-discrepant-sensor all-sensors))

;;;debug;;;(writeln "bad-sensor -" bad-sensor)
(if (null? bad-sensor)

(writeln "No fault found!")
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(let* ( (suspect-list (get-suspects bad-sensor) )
(final-suspects (check-each suspect-list))

(cond ( (null? final-suspects)
(writeln "*** Fault detected: raude -" _r.own! ***"))

( (equal? (length final-suspects) 1)
(writeln "The culprit is: " (car final-suspectsj)

(else
(writeln "The suspects are: " final-ruapects) ))))))

(define (get-suspects sensor)
(send (eval sensor) get-upstream-components)

CHECK-EACH (check-each suspect-list)
;; This procedure checks each suspect in the list to see if it

is a possible cause. It returns a list of remaining suspects.

(define (check-each suspect-list)
;;;debug;;;(writeln "suspect list =" suspect-list)

(if (null? suspect-list)
nil
(if (check? (car suspect-list))

(cons (car suspect-list) (check-each (cdr suspect-list)))
(check-each (cdr suspect-list)) )))

;;; CHECK? (check suspect)
;;; This procedure inverts the suspect's output, which

automatically propogates through the system. Downstream
;;; sensors are then checked for consistency. The procedure
;;; inverts the suspect's output state back again before returning.
;;; It returns true if suspect is a probable cause, false otherwise.

(define (check? suspect)
(let ( (fault-lst (send (eval suspect) get-fault-list))

(current-status (send (eval suspect) get-status))
;;;debug;;;(writeln "checking suspect: " suspect)

(cond ( (check-faults? suspect fault-lst)
(send (eval suspect) set-status current-status)
#T)

(else
(send (eval suspect) set-status current-status)
#F ))))

CHECK-FAULTS? (check-faults suspect fault-list)
;;; This procedure inverts the component's (item) output state.

Using update ensures change of state will be automatically
propogated to following components.

(define (check-faults? suspect fault-list)
(if (null? fault-list)

nil
(if (check-hypoth? (car fault-list) suspect)#T

(check-faults? suspect (cdr fault-list)) )))

(define (check-hypoth? fault-type suspect)
;;;debug;;:(writeln "checking fault: " fault-type)

(send (eval suspect) set-status fault-type)
(send (eval suspect) update)
(let ( (ds (get-discrepant-sensor all-sensors))

;;;debug;;; (writeln "discr sensor from all= " ds)
(if (null? (get-discrepant-sensor all-sensors))
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#T
#F ))

;;; GET-DISCREPANT-SENSOR (get-discrepant-sensor sensor-list)
;;; This procedure gets a discrepant sensor (if one exists) by comparing
;;; each sensor (in the sensor-list) in the real world against the one
;;; in the model world. The first discrepant sensor found is returned.
;;; If none are found '() is returned to indicate all is ok!
;;; NOTE: Since a single point failure is assumed, any discrepant

sensor reading can be used to collect suspects.

(define (get-discrepant-sensor sensor-list)
(cond
( (null? sensor-list)
'() )

( (discrepant-sensor? (car sensor-list))
(car sensor-list)

(else
(get-discrepant-sensor (cdr sensor-list)) )))

;;; DISCREPANT-SI4SOR? (discrepant-sensor? sensor)
;;; This procedure tests a sensor for discrepancy between the
;;; model-world sensors and the real-world sensors. True is
;;; returned if there is a discrepancy, false otherwise.

(define (discrepant-sensor? sensor)
(let* ( (r-sensor (get-real-sensor sensor))

(r-value (send (eval r-sensor) get-state))
(m-value (send (eval sensor) get-state))
(d-range (send (eval sensor) get-discrep-range))

(if (not (in-range? r-value m-value d-range))
#t
Ff )))

;;; This procedure fails a component in the real-world model simulation.
;;; h'e failure types allowed are listed in the object's fault-list.
;;; The output of the selected component to remain in the fault condition
;;; regardless of what the inputs are doing.
;;; eg. (fail r-epe-a 'latchup) the r prefix ensures only the real world
;;; epe is made to fail.

(define (fail component failure-type)
(send component set-status failure-type)

;;; FIX (fix component)
;;; This procedure fixes any component in the real-world objects that were
;;; broken using the fail function.
;;; eg. (fix r-epe-a) will repair the epe object failed above.

(defire (fix component)
(send component set-status 'on)

140



Appendix F: Model Pitch Channel Listing - No Filters

;;; File: MPCHL2.S
;;;

;;; AFIT/GSO/ENG/90D-03 THESIS
;,;

;,; MODEL BASED REASONING IN THE DETECTION OF SATELLITE ANOMALIES
;,;

;,; BY FLTLT RALPH W. DRIES
;,

,,; DECEMBER 1990
;I,

;;;DESCRIPTION

;;; This file defines the structure, instances and describes the
;;; structure of the modified Model pitch channel, with filters removed.
;;;

;;; Primary A components

(define m-esa-a
(make-instance ESA

'name 'm-esa-a
'output-list '(m-esa-sensor)
'input-list '(m-wheel-a) ))

(define m-epe-a
(make-instance EPE

'name 'm-epe-a
'output-list '(m-wce-a m-epe-sensor)
'input-list '(command-l) ))

(define m-wce-a
(make-instance AMPLIFIER

'name 'm-wce-a
,gain -17.75
'limit 25
'output-list "(m-wde-a m-wce-sensor)
'input-list '(m-epe-a) ))

(define m-wde-a
(make-instance AMPLIFIER

'name 'm-wde-a
'gain 1.0
'limit 25
'output-list '(m-wheel-a m-wde-sensor)
'input-list '(m-wce-a) ))

(define m-wheel-a
(make-instance WHEEL

'name 'm-wheel-a
'output-list '(m-esa-a m-wheel-sensor)
'input-list '(m-wde-a) ))
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;;; Redundant B components
;;; On startup, all are powered off, (status = off), and inputs
;;; and outputs are connected to primary A components.

(define m-esa-b
(make-instance ESA

'name 'm-esa-b
'status 'off
'output-list '(m-esa-sensor)
'input-list '(m-wheel-a) ))

(define m-epe-b
(make-instance EPE

'name 'm-epe-b
'status 'off
'output-list '(m-wce-a m-epe-sensor)
'input-list '(command-i) ))

(define :m-wce-b
(make-instance AMPLIFIER

'name •m-wce-b
'status 'off
,gain -17.75
'limit 25
'output-list '(m-wde-a m-wce-sensor)
'input-list '(m-epe-a) ))

(define m-wde-b
(make-instance AMPLIFIER

'name "m-wde-b
'status 'off
'gain 1.0
'limit 25
'output-list '(m-wheel-a m-wde-sensor)
'input-list '(m-wce-a) ))

(define m-wheel-b
(make-instance WHEEL

'name 'm-wheel-b
'status 'off
'output-list '(m-esa-a m-wheel-sensor)
'input-list '(m-wde-a) ))

;;; SENSORS (components, i.e., instance of SENSOR)
;;; The following defines the sensors connected to the otitput of
;;; gates in the circuit.

(define m-esa-sensor
(make-instance SENSOR

'name 'Im-esa-sensor
'upstream-components 'I(m-esa-sensor m-esa-a m-wheel-a m-wde-a m-wce-a

m-epe-a)
'discrep-range .05
'input-list '(m-esa-a) ))

(define m-epe-sensor
(make-instance SENSOR

'name 'Im-epe-sensor
'upstream-components '(m-epe-sensor m-epe-a)
'discrep-range .05
'input-list '(m-epe-a) ))
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(define m-wce-sensor
(make-instance SENSOR

'name 'm-wce-sensor
'upstream-components '(m-wce-Bensor m-wce-a m-epe-a)
'input-list '(m-wce-a) ))

(define m-wde-sensor
(make-instance SENSOR

'name 'm-wde-sensor
'upstream-components "(m-wde-sensor m-wde-a m-wce-a m-epe-a)
'input-list '(m-wde-a) ))

(define m-wheel-sensor
(make-instance SENSOR

'name 'm-wheel-sensor
'upstream-components '(m-wheel-sensor m-wheel-a m-wde-a m-wce-a m-epe-a)
'input-list '(m-wheel-a) )
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Appendix G: Real Pitch Channel Listing - No Filters

,; File: RPCHL2.S
;,;

,; AFIT/GSO/ENG/90D-03 THESIS
;,;

;;; MODEL BASED REASONING IN THE DETECTION OF SATELLITE ANOMALIES
;;;

;;; BY FLTLT RALPH W. DRIES
;;;

,; DECEMBER 1990
;;;

;;; DESCRIPTION
;;;

;;; This file defines the structure, instances and describes the
;;; structure of the modified Real pitch channel, with filters removed.
;;'

;;; Primary A components

(define r-esa-a
(make-instance ESA

'name 'r-esa-a
'output-list '(r-esa-sensor)
'input-list •(r-wheel-a) ))

(define r-epe-a
(make-instance EPE

'name •r-epe-a
'output-list "(r-wce-a r-epe-sensor)
'input-list '(command-l) ))

(define r-wce-a
(make-instance AMPLII R

'name •r-wce-a
'gain -17.75
'limit 25
'output-list '(r-wde-a r-wce-sensor)
'input-list '(r-epe-a) ))

(define r-wde-a
(make-instance AMPLIFIER

'name 'r-wde-a
'gain 1.0
'limit 25
'output-list '(r-wheel-a r-wde-sensor)
'input-list '(r-wce-a) ))

(define r-wheel-a
(make-instance WHEEL

'name 'r-wheel-a
'output-list '(r-esa-a r-wheel-sensor)
'input-list '(r-wde-a) ))
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;;; Redundant B components
;;; On startup, all are powered off, (status = off), and inputs
;;; and outputs are connected to primary A components.

(define r-esa-b
(make-instance ESA

'name "r-esa-b
'status 'off
'output-list '(r-esa-sensor)
'input-list '(r-wheel-a) ))

(define r-epe-b
(make-instance EPE

'name "r-epe-b
'status 'off
'output-list '(r-wce-a r-epe-sensor)
'input-list '(command-l) ))

(define r-wce-b
(make-instance AMPLIFIER

'name •r-wce-b
'status 'off
'gain -17.75
'limit 25
'output-list "(r-wde-a r-wce-sensor)
'input-list '(r-epe-a) ))

(define r-wde-b
(make-instance AMPLIFIER

'name 'r-wde-b
'status 'off
'gain 1.0
'limit 25
'output-list '(r-wheel-a r-wde-sensor)
'input-list '(r-wce-a) ))

(define r-wheel-b
(make-instance WHEEL

'name 'r-wheel-b
'status 'off
'output-list '(r-esa-a r-wheel-sensor)
'input-list '(r-wde-a) ))

;;; SENSORS (components, i.e., instance of SENSOR)
;;; The following defines the sensors connected to the output of
;;; gates in the circuit.

(define r-esa-sensor
(make-instance SENSOR

'name 'r-esa-sensor
'input-list '(r-esa-a) ))

(define r-epe-sensor
(make-instance SENSOR

'name 'r-epe-sensor
'input-list '(r-epe-a) ))

(define r-wce-sensor
(make-instance SENSOR

'name 'r-wce-sensor
'input-list '(r-wce-a) ))
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(define r-wde-sensor
(make-instance SENSOR

'name 'r-wde-sensor
'input-list '(r-wde-a) )

(define r-wheel-sensor
(make-instance SENSOR

'name 'r-whee 1-sensor
'input-list '(r-wheel-a) )
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Appendix H: SCOOPS Component Descriptions

The following listing describes the structure of all objects instantiated in the
pitch control channel. The listing was generated using the describe-all function with
the parameter all-components passed to it. The structure, and reset-state of each
object in the all-components list is displayed using SCOOPS inbuilt describe function.
The first few statements, immediately below, reset the structure of the pitch control
channel and set the tolerance in each object to 0.01.

[3] (reset-system)
OK
[4] (set-tolerance .01)

()
[5] (describe-all all-components)

INSTANCE DESCRIPTION

Instance of Class ESA

Class Variables :

Instance Variables
FAULT-LIST (HIGH LOW ZERO LATCHUP LATCHDOWN)
TOLERANCE 0.01
NAME : M-ESA-A
STATUS ON
STATE 0
INPUT-LIST (M-WHEEL-A)
OUTPUT-LIST (M-ESA-SENSOR)
GAIN 3.52727465124072e-6
OMEGA 0
LIMIT 5

INSTANCE DESCRIPTION

Instance of Class ESA

Class Variables :

Instance Variables
FAULT-LIST (HIGH LOW ZERO LATCHUP LATCHDOWN)
TOLERANCE 0.01
NAME : M-ESA-B
STATUS OFF
STATE 0
INPUT-LIST (M-WHEEL-A)
OUTPUT-LIST (M-ESA-SENSOR)
GAIN 3.52727465124072e-6
OMEGA 0
LIMIT 5

INSTANCE DESCRIPTION
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Instance of Class EPE

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : M-EPE-A
STATUS ON
STATE 0
INPUT-LIST (COMMAND-i)
OUTPUT-LIST (M-WCE-A M-EPE-SENSOR)
GAIN 0.976
LIMIT 5
TOLERANCE : 0.01

INSTANCE DESCRIPTION

Instance of Class EPE

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : M-EPE-B
STATUS OFF
STATE 0
INPUT-LIST (COMMAND-I)
OUTPUT-LIST (M-WCE-A M-EPE-SENSOR)
GAIN 0.976
LIMIT 5
TOLERANCE : 0.01

INSTANCE DESCRIPTION

Instance of Class WCE

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : M-WCE-A
STATUS ON
STATE 0
INPUT-LIST (M-EPE-A)
OUTPUT-LIST (M-WDE-A M-WCE-SENSOR)
GAIN : -17.75
XN-: 0
YN-1 : 0
YN-2: 0
LIMIT : 25
TOLERANCE : 0.01

INSTANCE DESCRIPTION

Instance of Class WCE

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : M-WCE-B
STATUS : OFF
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STATE : 0
INPUT-LIST : (M-EPE-A)
OUTPUT-LIST : (M-WDE-A M-WCE-SENSOR)
GAIN -17.75
XN-1 0
YN-1 0
YN-2 0
LIMIT 25
TOLERANCE : 0.01

INSTANCE DESCRIPTION

Instance of Class WDE

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : M-WDE-A
STATUS ON
STATE 0
INPUT-LIST (M-WCE-A)
OUTPUT-LIST (M-WHEEL-A M-WDE-SENSOR)
GAIN : 1
LIMIT : 25
XN-1 : 0
YN-: 0
TOLERANCE : 0.01

INSTANCE DESCRIPTION

Instance of Class WDE

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : M-WDE-B
STATUS OFF
STATE 0
INPUT-LIST (M-WCE-A)
OUTPUT-LIST (M-WHEEL-A M-WDE-SENSOR)
GAIN : 1
LIMIT : 25
XN-: 0
YN-1 :
TOLERANCE : 0.01

INSTANCE DESCRIPTION

Instance of Class WHEEL

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME :M-WHEEL-A
STATUS ON
STATE 0
INPUT-LIST (M-WDE-A)
OUTPUT-LIST (M-ESA-A M-WHEEL-SENSOR)
GAIN : -1.386
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DELTA-RPM : 0
LIMIT : 35
TOLERANCE : 0.01

INSTANCE DESCRIPTION

Instance of Class WHEEL

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : M-WHEEL-B
STATUS OFF
STATE 0
INPUT-LIST (M-WDE-A)
OUTPUT-LIST (M-ESA-A M-WHEEL-SENSOR)
GAIN : -1.386
DELTA-RPM : 0
LIMIT : 35
TOLERANCE : 0.01

INSTANCE DESCRIPTION

Instance of Class SENSOR

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : M-ESA-SENSOR
STATUS ON
STATE 0
INPUT-LIST (M-ESA-A)
OUTPUT-LIST ()
UPSTREAM-COMPONENTS : (M-ESA-SENSOR M-ESA-A M-WHEEL-A M-WDE-A M-WCE-A

M-EPE-A)
GAIN 1
LIMIT 100
DISCREP-RANGE : 0.05
TOLERANCE : 0.01

INSTANCE DESCRIPTION

Instance of Class SENSOR

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : M-EPE-SENSOR
STATUS ON
STATE 0
INPUT-LIST (M-EPE-A)
OUTPUT-LIST ()
UPSTREAM-COMPONENTS : (M-EPE-SENSOR M-EPE-A)
GAIN 1
LIMIT 100
DISCREP-RANGE : 0.05
TOLERANCE : 0.01

INSTANCE DESCRIPTION
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Instance of Class SENSOR

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : M-WCE-SENSOR
STATUS ON
STATE 0
INPUT-LIST (M-WCE-A)
OUTPUT-LIST ()
UPSTREAM-COMPONENTS : (M-WCE-SENSOR M-WCE-A M-EPE-A)
GAIN 1
LIMIT 100
DISCREP-RANGE : 0.5
TOLERANCE : 0.01

INSTANCE DESCRIPTION

Instance of Class SENSOR

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : M-WDE-SENSOR
STATUS ON
STATE 0
INPUT-LIST (M-WDE-A)
OUTPUT-LIST ()
UPSTREAM-COMPONENTS : (M-WDE-SENSOR M-WDE-A M-WCE-A M-EPE-A)
GAIN 1
LIMIT 100
DISCREP-RANGE : 0.5
TOLERANCE : 0.01

INSTANCE DESCRIPTION

Instance of Class SENSOR

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : M-WHEEL-SENSOR
STATUS ON
STATE 0
INPUT-LIST (M-WHEEL-A)
OUTPUT-LIST ()
UPSTREAM-COMPONENTS : (M-WHEEL-SENSOR M-WHEEL-A M-WDE-A M-WCE-A M-EPE-A)
GAIN 1
LIMIT 100
DISCREP-RANGE : 0.5
TOLERANCE : 0.01

INSTANCE DESCRIPTION

Instance of Class COMMAND

Class Variables
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Instance Variables
OUTPUT-LIST (M-EPE-A M-EPE-B R-EPE-A R-EPE-B)
INPUT-LIST ()
STATE 0
STATUS ON
NAME : COMMAND-I

INSTANCE DESCRIPTION

Instance of Class ESA

Class Variables :

Instance Variables
FAULT-LIST (HIGH LOW ZERO LATCHUP LATCHDOWN)
TOLERANCE 0.01
NAME : R-ESA-A
STATUS ON
STATE 0
INPUT-LIST (R-WHEEL-A)
OUTPUT-LIST (R-ESA-SENSOR)
GAIN 3.52727465124072e-6
OMEGA 0
LIMIT 5

INSTANCE DESCRIPTION

Instance of Class ESA

Clar3 Variables :

Instance Variables
FAULT-LIST (HIGH LOW ZERO LATCHUP LATCHDOWN)
TOLERANCE 0.01
NAME : R-ESA-B
STATUS OFF
STATE 0
INPUT-LIST (R-WHEEL-A)
OUTPUT-LIST (R-ESA-SENSOR)
GAIN 3.52727465124072e-6
OMEGA 0
LIMIT 5

INSTANCE DESCRIPTION

Instance of Class EPE

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : R-EPE-A
STATUS ON
STATE 0
INPUT-LIST (COMMAND-i)
OUTPUT-LIST (R-WCE-A R-EPE-SENSOR)
GAIN 0.976
LIMIT 5
TOLERANCE : 0.01

INSTANCE DESCRIPTION
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Instance of Class EPE

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : R-EPE-B
STATUS OFF
STATE 0
INPUT-LIST (COMMAND-l)
OUTPUT-LIST (R-WCE-A R-EPE-SENSOR)
GAIN 0.976
LIMIT 5
TOLERANCE : 0.01

INSTANCE DESCRIPTION

Instance of Class WCE

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : R-WCE-A
STATUS ON
STATE 0
INPUT-LIST (R-EPE-A)
OUTPUT-LIST (R-WDE-A R-WCE-SENSOR)
GAIN : -17.75
XN-: 0
YN-1 : 0
YN-2: 0
LIMIT : 25
TOLERANCE : 0.01

INSTANCE DESCRIPTION

Instance of Class WCE

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : R-WCE-B
STATUS OFF
STATE 0
INPUT-LIST (R-EPE-A)
OUTPUT-LIST (R-WDE-A R-WCE-SENSOR)
GAIN : -17.75
XN-l :0
YN-1 :0
YN-2: 0
LIMIT : 25
TOLERANCE : 0.01

INSTANCE DESCRIPTION

Instance of Class WDE

Class Variables
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Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : R-WDE-A
STATUS ON
STATE 0
INPUT-LIST (R-WCE-A)
OUTPUT-LIST (R-WHEEL-A R-WDE-SENSOR)
GAIN : 1
LIMIT : 25
XN-l :0
YN-1 :0
TOLERANCE : 0.01

INSTANCE DESCRIPTION

Instance of Class WDE

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : R-WDE-B
STATUS OFF
STATE 0
INPUT-LIST (R-WCE-A)
OUTPUT-LIST (R-WHEEL-A R-WDE-SENSOR)
GAIN : 1
LIMIT : 25
XN-: 0
YN-I : 0
TOLERANCE : 0.01

INSTANCE DESCRIPTION

Instance of Class WHEEL

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : R-WHEEL-A
STATUS ON
STATE 0
INPUT-LIST (R-WDE-A)
OUTPUT-LIST (R-ESA-A R-WHEEL-SENSOR)
GAIN : -1.386
DELTA-RPM : 0
LIMIT : 35
TOLERANCE : 0.01

INSTANCE DESCRIPTION

Instance of Class WHEEL

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : R-WHEEL-B
STATUS OFF

STATE 0
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INPUT-LIST : (R-WDE-A)
OUTPUT-LIST : (R-ESA-A R-WHEEL-SENSOR)
GAIN : -1.386
DELTA-RPM : 0
LIMIT : 35
TOLERANCE : 0.01

INSTANCE DESCRIPTION

Instance of Class SENSOR

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : R-ESA-SENSOR
STATUS ON
STATE 0
INPUT-LIST (R-ESA-A)
OUTPUT-LIST ()
UPSTREAM-COMPONENTS : #!UNASSIGNED
GAIN : 1
LIMIT : 100
DISCREP-RANGE : 0.5
TOLERANCE : 0.01

INSTANCE DESCRIPTION

Instance of Class SENSOR

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : R-EPE-SENSOR
STATUS ON
STATE 0
INPUT-LIST (R-EPE-A)
OUTPUT-LIST ()
UPSTREAM-COMPONENTS : #IUNASSIGNED
GAIN 1
LIMIT 100
DISCREP-RANGE : 0.5
TOLERANCE : 0.01

INSTANCE DESCRIPTION

Instance of Class SENSOR

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : R-WCE-SENSOR
STATUS ON
STATE 0
INPUT-LIST (R-WCE-A)
OUTPUT-LIST ()
UPSTREAM-COMPONENTS : #1UNASSIGNED
GAIN 1
LIMIT 100
DISCREP-RANGE : 0.5
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TOLERANCE : 0.01

INSTANCE DESCRIPTION

Instance of Class SENSOR

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : R-WDE-SENSOR
STATUS ON
STATE 0
INPUT-LIST (R-WDE-A)
OUTPUT-LIST ()
UPSTREAM-COMPONENTS : #1UNASSIGNED
GAIN 1
LIMIT 100
DISCREP-RANGE : 0.5
TOLERANCE : 0.01

INSTANCE DESCRIPTION

Instance of Class SENSOR

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : R-WHEEL-SENSOR
STATUS ON
STATE 0
INPUT-LIST (R-WHEEL-A)
OUTPUT-LIST ()
UPSTREAM-COMPONENTS : #1UNASSIGNED
GAIN : 1
LIMIT : 100
DISCREP-RANGE : 0.5
TOLERANCE : 0.01

()
[6] (transcript-off)
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Appendix I: Program Run - Designed Model

The following Scheme program run starts is for the pitch channel simulation
that includes the filters in the WCE and the WDE. The WCE was failed at line 38,
the sensors checked at line 40 and a diagnosis carried out at line 41. The reasoner
could not come up with the cause of the fault!

[28] (reset-system)
OK
[29] (set-tolerance .001)
()
[30] (set-pitch .5)

Model EPE-Sensor = 0.488
Model WCE-Sensor = -25
Model WDE-Sensor = -15.0758734859112
Model Wheel-Sensor = 20.8951606514729

wheel delta-rpm = 38.0367313297177
Model ESA-Sensor = 0.499826773425537

esa omega = 1.34165998235367e-4

Real EPE-Sensor = 0.488
Real WCE-Sensor = -25
Real WDE-Sensor = -15.0758734859112
Real Wheel-Sensor = 20.8951606514729
wheel delta-rpm = 38.0367313297177

Real ESA Sensor = 0.499826773425537
esa omega = 1.34165998235367e-4

DONE
[31] (sp)

Model EPE-Sensor = 0.488
Model WCE-Sensor = -25
Model WDE-Sensor = -15.0758734859112
Model Wheel-Sensor = 20.8951606514729

wheel delta-rpm = 38.0367313297177
Model ESA-Sensor = 0.499826773425537

esa omega = 1.34165998235367e-4

Real EPE-Sensor = 0.488
Real WCE-Sensor = -25
Real WDE-Sensor = -15.0758734859112
Real Wheel-Sensor = 20.8951606514729

wheel delta-rpm = 38.0367313297177
Real ESA Sensor = 0.499826773425537
esa omega = 1.34165998235367e-4

DONE
[32] (sp)

Model EPE-Sensor = 0.488
Model WCE-Sensor = -23.70477568
Model WDE-Sensor = -15.4994523598706
Model Wheel-Sensor = 21.4822409707807

wheel delta-rpm = 59.5189723004984
Model ESA-Sensor = 0.4982832982623
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esa omega = 2.09939762263446e-4

Real EPE-Sensor = 0.488
Real WCE-Sensor = -23.70477568
Real WDE-Sensor = -15.4994523598706
Real Wheel-Sensor = 21.4822409707807

wheel delta-rpm = 59.5189723004984
Real ESA Sensor = 0.4982832982623

esa omega = 2.09939762263446e-4

DONE
[33] (set-tolerance .00001)
()
[34] (sp)

Model EPE-Sensor = 0.486324499104005
Model WCE-Sensor = -16.8910458677985
Model WDE-Sensor = -13.2974221853134
Model Wheel-Sensor = 18.4302271488444

wheel delta-rpm = 97.9088827718956
Model ESA-Sensor = 0.495086023076669

esa omega = 3.45351520332607e-4

Real EPE-Sensor = 0.486324499104005
Real WCE-Sensor = -16.8910458677985
Real WDE-Sensor = -13.2974221853134
Real Wheel-Sensor = 18.4302271488444

wheel delta-rpm = 97.9088827718956
Real ESA Sensor = 0.495086023076669

esa omega = 3.45351520332607e-4

DONE
[35] (sp)

Model EPE-Sensor = 0.483203958522829
Model WCE-Sensor = -12.4461685629118
Model WDE-Sensor = -11.4678175841791
Model Wheel-Sensor = 15.8943951716722

wheel delta-rpm = 130.802263494763
Model ESA-Sensor = 0.490452314607523

esa omega = 4.61375508349986e-4

Real EPE-Sensor = 0.483203958522829
Real WCE-Sensor = -12.4461685629118
Real WDE-Sensor = -11.4678175841791
Real Wheel-Sensor = 15.8943951716722
wheel delta-rpm = 130.802263494763

Real ESA Sensor = 0.490452314607523
esa omega = 4.61375508349986e-4

DONE
[36] (sp)

Model EPE-Sensor = 0.478681459056942
Model WCE-Sensor = -10.0258011315152
Model WDE-Sensor = -10.2546791091417
Model Wheel-Sensor = 14.2129852452704

wheel delta-rpm = 159.914140107163
Model ESA-Sensor = 0.484569631361449

esa omega = 5.64061092774955e-4

Real EPE-Sensor = 0.478681459056942
Real WCE-Sensor = -10.0258011315152
Real WDE-Sensor = -10.2546791091417
Real Wheel-Sensor = 14.2129852452704
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wheel delta-rpm = 159.914140107163
Real ESA Sensor = 0.484569631361449

esa omega = 5.64061092774955e-4

DONE
(37] (describe r-wce-a)

INSTANCE DESCRIPTION

Instance of Class WCE

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : R-WCE-A
STATUS ON
STATE -10.0258011315152
INPUT-LIST (R-EPE-A)
OUTPUT-LIST (R-WDE-A R-WCE-SENSOR)
GAIN : -17.75
XN-1 : 0.478681459056942
YN-1 : 0.564833866564236
YN-2 : 0.617228472790691
LIMIT : 25
TOLERANCE : i.e-5()

[38] (fail r-wce-a "latchup)
LATCHUP
(39] (describe r-wce-a)

INSTANCE DESCRIPTION

Instance of Class WCE

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : R-WCE-A
STATUS LATCHUP
STATE -10.0258011315152
INPUT-LIST (R-EPE-A)
OUTPUT-LIST (R-WDE-A R-WCE-SENSOR)
GAIN : -17.75
XN-1 : 0.478681459056942
YN-1 : 0.564833866564236
YN-2 : 0.617228472790691
LIMIT : 25
TOLERANCE : 1.e-5

()
[40] (sp)

Model EPE-Sensor = 0.472939960208774
Model WCE-Sensor = -8.75638074294346
Model WDE-Sensor = -9.45395266031472
Model %hieel-Sensor = 13.1031783871962

wheel delta-rpm = 186.544048758552
Model ESA-Sensor = 0.47756298633463

esa omega = 6.57992094525853e-4

Real EPE-Sensor = 0.472939960208774
Real WCE-Sensor = 25
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Real WDE-Sensor =11.1190589701237
Real Wheel-Sensor =-15.4110157325915

wheel delta-rpm = 131.603725387073
Real ESA Sensor =0.478652299563926

esa omega = 4.64202484566667e-4

DONE
[41] (diagnose)
bad-sensor =M-WCE-SENSOR
suspect list =(M-WCE-A M-EPE-A)
checking suspect: M-WCE-A
checking fault: HIGH
disc sensor from all= M-WCE-SENSOR
checking fault: LOW
disc sensor from all= M-WCE-SENSOR
checking fault: ZERO
disc sensor from all= M-WCE-SENSOR
checking fault: LATCHUP
disc sensor from all= M-WDE-SENSOR
checking fault: LATCHDOWN
disc sensor from all= M-WCE-SENSOR
Suspect list =(M-EPE-A)
checking suspect: M-EPE-A
checking fault: HIGH
disc sensor from all= M-WCE-SENSOR
cliecking fault: LOW
disc sensor from all= H-WCE-SENSOR
checking fault: ZERO
6isc sensor from all= M-EPE-SENSOR
checking fault: LATCHUP
cisc sensor from all= M-EPE-SENSOR
c~hecking fault: LATCHDOWN
disc sensor from all= M-EPE-SENSOR
uspect list =()
**Fault detected: Cause Unknown! i

[42] (sp)

iodel EPE-Sensor = 0.467164644374392
'(odel WCE-Sensor = 7.82396905603094
,Iodel WDE-Sensor = 2.84440235755722
'jodel Wheel-Sensor = -3.94234166757431

wheel delta-rpm = 223.655320367624
Aodel ESA-Sensor = 0.438149559793175

esa omega = 7.88893742147841e-4

-teal EPE-Sensor = 0.467164644374392
Aeal WCE-Sensor = 25
Real WDE-Sensor = 14.1397289508637
leal Wheel-Sensor = -19.5976643258971
wheel delta-rpm = 94.3734536117936

1 ea1 ESA Sensor = 0.474065152516732
esa omega = ? 32881090674921e-4

DONE
(43] (fix r-wce-a)
ON
[44] (describe r-wce-a)

INSTANCE DESCRIPTION

Instance of Class WCE

Class Variables:
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Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : R-WCE-A
STATUS ON
STATE 25
INPUT-LIST (R-EPE-A)
OUTPUT-LIST (R-WDE-A R-WCE-SENSOR)
GAIN : -17.75
XN-1 : 0.478681459056942
YN-1 : 0.564833866564236
YN-2 : 0.617228472790691
LIMIT : 25
TOLERANCE : l.e-5

()
[45] (sp)

Model EPE-Sensor = 0.462687588856331
Model WCE-Sensor = -21.5271636204109
Model WDE-Sensor = -13.5821135434337
Model Wheel-Sensor = 18.8248093711992

wheel delta-rpm = 254.995517684589
Model ESA-Sensor = 0.428539172640725

esa omega = 8.99439225708857e-4

Real EPE-Sensor = 0.462687588856331
Real WCE-Sensor = -8.16822270319648
Real WDE-Sensor = -3.7181200050228
Real Wheel-Sensor = 5.1533143269616

wheel delta-rpm = 104.25696133443
Real ESA Sensor = 0.470054852747156

esa omega = 3.67742936930319e-4

DONE
[46] (sp)

Model EPE-Sensor = 0.458773536281224
Model WCE-Sensor = -19.6529266742498
Model WDE-Sensor = -14.2770982914002
Model Wheel-Sensor = 19.7880582318806

wheel delta-rpm = 295.052081850433
Model ESA-Sensor = 0.417417149297213

esa omega = 0.00104072972910683

Real EPE-Sensor = 0.458773536281224
Real WCE-Sensor = -7.72115899754946
Real WDE-Sensor = -4.41831933995724
Real Wheel-Sensor = 6.12379060518073

wheel delta-rpm = 115.960872068542
Real ESA Sensor = 0.465609461768215

esa omega = 4.09025844583135e-4

DONE
(47] (sp)

Model EPE-Sensor = 0.454434834685778
Model WCE-Sensor = -14.4467512853061
Model WDE-Sensor = -12.400604544565
Model Wheel-Sensor = 17.1872378987671

wheel delta-rpm = 330.728253073301
Model ESA-Sensor = 0.404756170914093

esa omega = 0.00116656938351458

Real EPE-Sensor = 0.454434834685778
Real WCE-Sensor = -7.58719730095281
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Real WDE-Sensor = -5.05429330090393
Real Wheel-Sensor = 7.00525051505285
wheel delta-rpm = 129.496658676107

Real ESA Sensor = 0.460653247259313
esa omega = 4.56770281568605e-4

DONE
(48] (sp)

Model EPE-Sensor = 0.44959756932509
Model WCE-Sensor = -10.8810604113251
Model WDE-Sensor = -10.7494381488415
Model Wheel-Sensor = 14.8987212742943

wheel delta-rpm = 361.511212037846
Model ESA-Sensor = 0.390755163384707

esa omega = 0.0012751493343604

Real EPE-Sensor = 0.44959756932509
Real WCE-Sensor = -7.48853863349113
Real WDE-Sensor = -5.54358412877156
Real Wheel-Sensor = 7.6834076024-i18

wheel delta-rpm = 144.486621047192
Real ESA Sensor = 0.4551195011d939

esa omega = 5.096439958o5301e-4

DONE
[49] (sp)

Model EPE-Sensor = 0.444196633746444
Model WCE-Sensor = -8.92097782532382
Model WDE-Sensor = -9.6218580131477
Model Wheel-Sensor = 13.3358952062227

wheel delta-rpm = 388.813092296559
Model ESA-Sensor = 0.375583778501739

esa omega = 0.00137145056452817

Real EPE-Sensor = 0.444196633746444
Real WCE-Sensor = -7.36736034165554
Real WDE-Sensor = -5.89139221558405
Real Wheel-Sensor = 8.16546961079949

wheel delta-rpm = 160.527908837168
Real ESA Sensor = 0.448957693691164

esa omega = 5.66226023658023e-4

DONE
(50] (sp)

Model EPE-Sensor = 0.438182709042576
Model WCE-Sensor = -7.89739897850404
Model WDE-Sensor = -8.86267312007939
Model Wheel-Sensor = 12.28366494443

wheel delta-rpm = 413.778937084957
Model ESA-Sensor = 0.359358336010273

esa omega = 0.0014595119559971

Real EPE-Sensor = 0.438182709042576
Real WCE-Sensor = -7.21846521267016
Real WDE-Sensor = -6.12040634085861
Real Wheel-Sensor = 8.48288318843004

wheel delta-rpm = 177.274270520968
Real ESA Sensor = 0.442132495217498
esa omega = 6 .2 5 2 95040725801e-4

DONE
(51] (sp)
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Model EPE-Sensor = 0.431521315332279
Model WCE-Sensor = -7.33358127181175
Model WDE-Sensor = -8.31578022137679
Model Wheel-Sensor = 11.5256713868282

wheel delta-rpm = 437.095101386718
Model ESA-Sensor = 0.34215840319032

esa omega = 0.00154175447130286

Real EPE-Sensor = 0.431521315332279
Real WCE-Sensor = -7.04609778629477
Real WDE-Sensor = -6.25288354895924
Real Wheel-Sensor = 8.66649659885751

wheel delta-rpm = 194.442896090122
Real ESA Sensor = 0.434621275128168

esa omega = 6.85853498492519e-4

DONE
(52] (fail r-epe-a 'zero)
ZERO
[53] (sp)

Model EPE-Sensor = 0.424190364525092
Model WCE-Sensor = -6.97344619317545
Model WDE-Sensor = -7.8845207423793
Model Wheel-Sensor = 10.9279457489377

wheel delta-rpm = 459.139346560191
Model ESA-Sensor = 0.324042451020106

esa omega = 0.00161951057850899

Real EPE-Sensor = 0
Real WCE-Sensor = 17.4805049324202
Real WDE-Sensor = 8.24971540243142
Real Wheel-Sensor = -11.4341055477699

wheel delta-rpm = 176.728785619577
Real ESA Sensor = 0.427067333453463

esa omega = 6.23370965660491e-4

DONE
(54] (diagnose)
bad-sensor =M-EPE-SENSOR
suspect list =(M-EPE-A)
checking suspect: M-EPE-A
checking fault: HIGH
disc sensor from all= M-EPE-SENSOR
checking fault: LOW
disc sensor from all= M-EPE-SENSOR
checking fault: ZERO
disc sensor from all= M-WCE-SENSOR
checking fault: LATCHUP
disc sensor from all= M-EPE-SENSOR
checking fault: LATCHDOWN
disc sensor from all= M-EPE-SENSOR
suspect list =()
*** Fault detected: Cause Unknown! **
()
(55] (transcript-off)
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Appendix J: Program Run - Modified Model

This program run tests the model-based reasoner without filters in the WCE
and WDE of the real and model-world pitch channel systems. The (reset-system2)
invocation loads the MPCHL2.S and RPCHL2.S which instantiate the WCE and
WDE as simple amplifiers, rather that as objects that use difference equations to
model the compensation filters.

[3] (reset-system2)
OK
(4] (set-pitch .1)

Model EPE-Sensor = 0.0976
Model WCE-Sensor = -7.808
Model WDE-Sensor = -7.808
Model Wheel-Sensor = 10.821888

wheel delta-rpm = 10.821888
Model ESA-Sensor = 0.0998906378754519

esa omega = 3.81717712209661e-5

Real EPE-Sensor = 0.0976
Real WCE-Sensor = -7.808
Real WDE-Sensor = -7.808
Real Wheel-Sensor = 10.821888

wheel delta-rpm = 10.821888
Real ESA Sensor = 0.0998906378754519

esa omega = 3.81717712209661e-5

DONE
[5] (describe r-epe-a)

INSTANCE DESCRIPTION

Instance of Class EPE

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : R-EPE-A
STATUS : ON
STATE 0.0976
INPUT-LIST : (COMMAND-i)
OUTPUT-LIST : (R-WCE-A R-EPE-SENSOR)
GAIN 0.976
LIMIT 5
TOLERANCE : l.e-4

()
(6] (fail r-epe-a)

[VM ERROR encounteredl]
Invalid argument count: Function expected 2 argument(s)
but was called with 1 as follows:
(#<PROCEDURE FAIL> #<ENVIRONMENT>)

(Inspect] Quit
[7] (fail r-epe-a 'latchup)
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LATCHUP
[8] (describe r-epe-a)

INSTANCE DESCRIPTION

Instance of Class EPE

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : R-EPE-A
STATUS : LATCHUP
STATE 0.0976
INPUT-LIST : (COMMAND-i)
OUTPUT-LIST : (R-WCE-A R-EPE-SENSOR)
GAIN 0.976
LIMIT 5
TOLERANCE : l.e-4

()
[9] (sp)

Model EPE-Sensor = 0.0974932625664411
Model WCE-Sensor = -7.808
Model WDE-Sensor = -7.808
Model Wheel-Sensor = 10.821888

wheel delta-rpm = 10.821888
Model ESA-Sensor = 0.0998906378754519

esa omega = 3.81717712209661e-5

Real EPE-Sensor = 5
Real WCE-Sensor = -25
Real WDE-Sensor = -25.
Real Wheel-Sensor = 34.65

wheel delta-rpm = 45.471888
Real ESA Sensor = 0.0993217531353592

esa omega = 1.60391837886457e-4

DONE
[10] (diagnose)
The culprit is: M-EPE-A
()
[11] (epe-b-on)
()
[12] (sp)

Model EPE-Sensor = 0.0969380310601105
Model WCE-Sensor = -7.75504248480884
Model WDE-Sensor = -7.75504248480884
Model Wheel-Sensor = 10.7484888839451

wheel delta-rpm = 56.2203768839451
Model ESA-Sensor = 0.0982940875249025

esa omega = 1.98304710265939e-4

Real EPE-Sensor = 0.0969380310601105
Real WCE-Sensor = -7.75504248480884
Real WDE-Sensor = -7.75504248480884
Real Wheel-Sensor = 10.7484888839451

wheel delta-rpm = 56.2203768839451
Real ESA Sensor = 0.0982940875249025

esa omega = 1.98304710265939e-4

DONE
(13] (diagnose)
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No fault found!()
[14] (fail r-wce-a 'zero)
ZERO
(15] (describe r-wce-a)

INSTANCE DESCRIPTION

Instance of Class AMPLIFIER

Class Variables :

Instance Variables
OUTPUT-LIST (R-WDE-A R-WCE-SENSOR)
INPUT-LIST (R-EPE-B)
STATE : -7.75504248480884
STATUS : ZERO
NAME : R-WCE-A
GAIN : -80
LIMIT : 25
TOLERANCE 0.01
FAULT-LIST (HIGH LOW ZERO LATCHUP LATCHDOWN)

()
(16] (sp)

Model EPE-Sensor = 0.0959350294243049
Model WCE-Sensor = -7.67480235394439
Model WDE-Sensor = -7.67480235394439
Model Wheel-Sensor = 10.6372760625669

wheel delta-rpm = 66.857652946512
Model ESA-Sensor - 0.0970503050326564

esa omega = 2.35825304479681e-4

Real EPE-Sensor = 0.0959350294243049
Real WCE-Sensor = 0
Real WDE-Sensor = 0.
Real Wheel-Sensor = 0.

wheel delta-rpm = 56.2203768839451
Real ESA Sensor = 0.0971578015350787

esa omega = 1.98304710265939e-4

DONE
[17] (describe r-wce-a)

INSTANCE DESCRIPTION

Instance of Class AMPLIFIER

Class Variables :

Instance Variables
OUTPUT-LIST (R-WDE-A R-WCE-SENSOR)
INPUT-LIST (R-EPE-E)
STATE : 0
STATUS : ZERO
NAME R-WCE-A
GAIN -80
LIMIT : 25
TOLERANCE 0.01
FAULT-LIST (HIGH LOW ZERO LATCHUP LATCHDOWN)

()
(18] (diagnose)
The culprit is: M-WCE-A
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[19] (wce-b-on)

[20] (sp)

Model EPE-Sensor = 0.0948260142982368
Model WCE-Sensor = -7.58608114385895
Model WDE-Sensor = -7.58608114385895
Model Wheel-Sensor = 10.5143084653885

wheel delta-rpm =98.6465135370343
Model ESA-Sensor = 0.0800820743996125

esa omega = 3.47953346632456e-4

Real EPE-Sensor = 0.0948260142982368
Real WCE-Sensor = -7.58608114385895
Real WDE-Sensor = -7.58608114385895
Real Wheel-Sensor = 10.5143084653885

wheel delta-rpm = 77.3719614119005
Real ESA Sensor = 0.094456486212241

esa omeqa =2.72912158204972e-4

DONE
[21] (fail r-wde-a 'low)
LOW
(22] (sp)

Model EPE-Sensor =0.0921895305431472
Model WCE-Sensor =-7.37516244345178
Model WDE-Sensor =-7.37516244345178
Model Wheel-Sensor =10.2219751466242

wheel delta-rpm =108.868488683659
Model ESA-Sensor =0.0779850021033133

esa omega = 3.84009060452756e-4

Real EPE-Sensor = 0.0921895305431472
Real WCE-Sensor = -7.37516244345178
Real WDE-Sensor = -12.3751624434518
Real Wheel-Sensor = 17.1519751466242
wheel delta-rpm = 94.5239365585246

Real ESA Sensor = 0.092719367827432
esa omega = 3.3341188535837e-4

DONE
[23] (diagnose)
The culprit is: M-WDE-A
0)
[24] (sp)

Model EPE-Sensor =0.0904941029995736
Model WCE-Sensor = -7.23952823996589
Model WDE-Sensor =-7.23952823996589
Model Wheel-Sensor = 10.0339861405927

wheel delta-rpm = 125.140375410748
Model ESA-Sensor =0.0466467424402125

esa omega =4.41404474033079e-4

Real EPE-Sensor = 0.0904941029995736
Real WCE-Sensor = -7.23952823996589
Real WDE-Sensor =-12.23952482399659
Real Wheel-Sensor = 16.9639861405927
wheel delta-rpm = 111.487922699117

Real ESA Sensor = 0.0906374857556056
esa omega = 3.93248523656081e-4

DONE
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[251 (fix-r-wde-a)

[VM ERROR encounteredl] Variable not defined in current environment

FIX-R-WDE-A

[Inspect) Quit
[26] (fix r-wde-a)
ON
(27] (sp)

Model EPE-Sensor = 0.0884621860974711
Model WCE-Sensor = -7.07697488779769
Model WDE-Sensor = -7.07697488779769
Model Wheel-Sensor = 9.80868719448759

wheel delta-rpm = 134.949062605236
Model ESA-Sensor = 0.0440183717239436

esa omega = 4.76002407736144e-4

Real EPE-Sensor = 0.0884621860974711
Real WCE-Sensor = -7.07697488779769
Real WDE-Sensor = -7.07697488779769
Real Wheel-Sensor = 9.80868719448759

wheel delta-rpm = 121.296609893605
Real ESA Sensor = 0.088285048634997

esa omega = 4.27846457359147e-4

DONE
[28] (fail r-wce-b 'zero)
ZERO
(29] (sp)

Model EPE-Sensor = 0.0861662074677571
Model WCE-Sensor = -6.89329659742057
Model WDE-Sensor = -6.89329659742057
Model Wheel-Sensor = 9.5541090840249

wheel delta-rpm = 144.50317168926
Model ESA-Sensor = 0.0411943275227i

esa omega = 5.09702374523414e-4

Real EPE-gensor = 0.0861662074677571
Real WCE-Sensor = 0

Real WDE-Sensor = 0.
Real Wheel-Sensor = 0.
wheel delta-rpm = 121.296609893605

Real. ESA Sensor = 0.0858334884343291
esa omega = 4.27845457359147e-4

DONE
[30] (diagnose)
The culprit is: M-WCE-B
()
(311 (fail r-wde-a 'latchdowi)
LATCHDOWN
(32] (sp)

Model EPE-Sensor = 0.0837734847119052
Model WCE-Sensor = -6.70187877695241
Model WDE-Sensor = -6.70187877695241
Model Wheel-Sensor = 9.28880398485605

wheel delta-rpm = 172.900193842166
Model ESA-Sensor = 0.0104649160194273

esa omega = 6.09866470934079e-4

Real EPE-Sensor = 0.0837734847119052
Real WCE-Sensor = 0
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Real WDE-Sensor =-25
Real Wheel-Sensor = 34.65
wheel delta-rpm = 155.946609893605

Real ESA Sensor = 0.0830317677426645
esa omega = 5.50066524024638e-4

DONE
(33] (diagnose)
*** Fault detected: Cause Unknown! *

0)
[34] (wce-b-on)

[35] (wde-a-on)

(36] (ap)

Model EPE-Sensor =0.0810390053168406
Model WCE-Sensor = -6.48312042534725
Model WDE-Sensor =-6.48312042534725
Model Wheel-Sensor =8.98560490953128

wheel delta-rpm =165.81340672141
Model ESA-Sensor =-0.0246590252098984

esa omega = 5.84869426364295e-4

Real EPE-Sensor = 0.0810390053168406
Real WCE-Sensor = -F.48312042534725
Real WDE-Sensor = -6.48312042534725
Real Wheel-Sensor = 8.98560490953128

wheel delta-rpm = 174.221018787992
Real ESA Sensor = 0.0763555920925125

esa omega = 6.14525383284218e-4

DONE
[37] (diagnose)
No fault found!

(38] (fail r-wheel-a 'zero)
ZERO
[39] (sp)

Model EPE-Sensor = 0.0745230578822922
Model WCE-Sensor = -5.96184463058337
Model WDE-Sensor = -5.96184463058337
Model Wheel-Sensor = 8.26311665798856

wheel delta-rpm = 174.076523379398
Model ESA-Sensor = -0.0280938311206894

esa omega = 6.14015703292263e-4

Real EPE-Sensor = 0.0745230578822922
Peal WCE-Sensor = -5.96184463058337
Real WDE-Sensor = -5.96184463058337
Real Wheel-Sensor = 0

wheel delta-rpm = 174.221018787992
Real ESA Sensor = 0.0728343616462939

esa omega =6.14525383284218e-4

DONE
[40] (diagnose)
The suspects are: (M-WHEEL-SENSOR M-WHEEL-A)

[41] (fix r-wheel-a)
ON
(42] (Bp)

Model EPE-Sensor =0.0710863369667828

169



Model WCE-Sensor = -5.68690695734263
Model IDE-Sensor = -5.68690695734263
Model Wheel-sensor = 7.88205304287688

wheel delta-rpm = 188.624159712218
Model ESA-Sensor = -0.100832882740029

esa omega = 6.94475499092455e-4

Real EPE-Sensor = 0.0710863369667828
Real WCE-Sensor = -5.68690695734263
Real WDE-Sensor = -5.68690695734263
Real Wheel-Sensor = 7.88205304287688

wheel delta-rpr. = 182.103071830869
Real ESA Sensor = 0.0692334779947779
esa omega = 6.42327549182093e-4

DONE
[43] (diagnose)
No fault found!
()
[44] (fail r-wce-sensor 'zero)
ZERO
[45] (sp)

Model EPE-Sensor = 0.0675718745229032
Model WCE-Sensor = -5.40574996183226
Model WDE-Sensor = -5.40574996183226
Model Wheel-Sensor = 7.49236944709951

wheel delta-rpm = 196.116529159317
Model ESA-Sensor = -0.104887942552263

esa omega = 7.20903143920939e-4

Real EPE-Sensor = 0.0675718745229032
Real WCE-Sensor = 0
Real WDE-Sensor = -5.40574996183226
Real Wheel-Sensor = 7.49236944709951

wheel delta-rpm = 189.595441277969
Real ESA Sensor = 0.0654772259355309

esa omega = 6.68755194010577e-4

DONE
[46] (diagnose)
The culprit is: M-WCE-SENSOR
()
[471 (transcript-off)
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Appendix K: Program Run - Modified Model -Verbose

This listing is a diagnostic run, similar to Appendix C, except that the
debugging writelns have been left in the code. Although lengthy, this listing has been
included here to enable the ready to follow through the operation of the propogation
mechanism, and the diagnostic reasoning algorithm.

(3] (reset-system2)
OK
[4] (set-pitch .1)
Change COMMAND-I to 0.1.
Change M-EPE-A to 0.0976.
Change M-WCE-A to -7.808.
Change M-WDE-A to -7.808.
Change M-WHEEL-A to 10.821888.
Change M-ESA-A to 0.0998906378754519.
Change M-ESA-SENSOR to 0.0998906378754519.
Change M-WHEEL-SENSOR to 10.821888.
Change M-WDE-SENSOR to -7.808.
Change M-WCE-SENSOR to -7.808.
Change M-EPE-SENSOR to 0.0976.
Change M-EPE-A to ().
Change R-EPE-A to 0.0976.
Change R-WCE-A to -7.808.
Change R-WDE-A to -7.808.
Change R-WHEEL-A to 10.821888.
Change R-ESA-A to 0.0998906378754519.
Change R-ESA-SENSOR to 0.0998906378754519.
Change R-WHEEL-SENSOR to 10.821888.
Change R-WDE-SENSOR to -7.808.
Change R-WCE-SENSOR to -7.808.
Change R-EPE-SENSOR to 0.0976.
Change R-EPE-A to ().

Model EPE-Sensor = 0.0976
Model WCE-Sensor = -7.808
Model WDE-Sensor = -7.808
Model Wheel-Sensor = 10.821888

wheel delta-rpm = 10.821888
Model ESA-Sensor = 0.0998906378754519

esa omega = 3.81717712209661e-5

Real EPE-Sensor = 0.0976
Real WCE-Sensor = -7.808
Real WDE-Sensor = -7.808
Real Wheel-Sensor = 10.821888

wheel delta-rpm = 10.821888
Real ESA Sensor = 0.0998906378754519

esa omega = 3.81717712209661e-5

DONE
(5) (describe r-epe-a)

INSTANCE DESCRIPTION

Instance of Class EPE
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Class Variables

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : R-EPE-A
STATUS : ON
STATE 0.0976
INPUT-LIST : (COMMAND-l)
OUTPUT-LIST (R-WCE-A R-EPE-SENSOR)
GAIN : 0.976
LIMIT 5
TOLERANCE : 1.e-4

()
[6] (fail r-epe-a)

[VM ERROR encounteredl]
Invalid argument count: Function expected 2 argument(s)
but was called with 1 as follows:
(#<PROCEDURE FAIL> #<ENVIRONMENT>)

(Inspect] Quit
[7] (fail r-epe-a "latchup)
LATCHUP
(8] (describe r-epe-a)

INSTANCE DESCRIPTION

Instance of Class EPE

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : R-EPE-A
STATUS : LATCHUP
STATE : 0.0976
INPUT-LIST (COMMAND-i)
OUTPUT-LIST : (R-WCE-A R-EPE-SENSOR)
GAIN : 0.976
LIMIT : 5
TOLERANCE : l.e-4

()
[9] (sp)
Change COMMAND-I to 0.0998906378754519.
Change M-EPE-A to 0.0974932625664411.
Change M-EPE-SENSOR to 0.0974932625664411.
Change M-EPE-A to ().
Change R-EPE-A to 5.
Change R-WCE-A to -25.
Change R-WDE-A to -25..
Change R-WHEEL-A to 34.65.
Change R-ESA-A to 0.0993217531353592.
Change R-ESA-SENSOR to 0.0993217531353592.
Change R-WHEEL-SENSOR to 34.65.
Change R-WDE-SENSOR to -25..
Change R-WCE-SENSOR to -25.
Change R-EPE-SENSOR to 5.
Change R-EPE-A to ().

Model EPE-Sensor = 0.0974932625664411
Model WCE-Sensor = -7.808
Model WDE-Sensor = -7.808
Model Wheel-Sensor = 10.821888
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wheel delta-rpm =10.821888
Model ESA-Sensor = 0.0998906378754519

esa omega = 3.81717712209661e-5

Real EPE-Sensor = 5
Real WCE-Sensor = -25
Real WDE-Sensor = -25.
Real Wheel-Sensor = 34.65

wheel delta-rpm = 45.471898
Real ESA Sensor = 0.0993217531353592

esa omega = 1.60391837886457e-4

DONE
[10] (diagnose)
bad-sensor =M-EPE-SENSOR
suspect list =(M-EPE-A)
checking suspect: M-EPE-A
checking fault: HIGH
Change M-EPE-A to 5.
Change M-WCE-A to -25.
Change M-WDE-A to -25..
Change M-WHEEL-A to 34.65.
Change M-ESA-A to 0.0993217531353592.
Change M-ESA-SENSOR to 0.0993217531353592.
Change M-WHEEL-SENSOR to 34.65.
Change M-WDE-SENSOR to -25..
Change M-WCE-SENSOR to -25.
Change M-EPE-SENSOR to 5.
disc sensor from all= (
suspect list =()
The culprit is: M-EPE-A
0)
(11] (epe-b-on)

(12] (ap)
Change COMMAND-i to 0.0993217531353592.
Change M-EPE-A to 0.0969380310601105.
Change M-WCE-A to -7.75504248480884.
Change M-WDE-A to -7.75504248480884.
Change M-WHEEL-A to 10.7484888839451.
Change M-ESA-A to 0.0982940875249025.
Change M-ESA-SENSOR to 0.0982940875249025.
Change M-WHEEL-SENSOR to 10.7484888839451.
Change M-WDE-SENSOR to -7.75504248480884.
Change M-WCE-SENSOR to -7.75504248480884.
Change M-EPE-SENSOR to 0.0969380310601105.
Change R-EPE-A to ().
Change R-EPE-A to 0.0969380310601105.
Change R-WCE-A to -7.75504248480884.
Change R-WDE-A to -7.75504248480884.
Change R-WHEEL-A to 10.7484888839451.
Change R-ESA-A to 0.0982940875249025.
Change R-ESA-SENSOR to 0.0982940875249025.
Change R-WHEEL-SENSOR to 10.7484888839451.
Change R-WDE-SENSOR to -7.75504248480884.
Change R-WCE-SENSOR to -7.75504248480884.
Change R-EPE-SENSOR to 0.0969380310601105.

Model EPE-Sensor = 0.0969380310601105
Model WCE-Sensor = -7.75504248480884
Model WDE-Sensor = -7.75504248480884
Model Wheel-Sensor = 10.7484888839451

wheel delta-rpm = 56.2203768839451
Model ESA-Sensor = 0.0982940875249025

esa omega = 1.98304710265939e-4
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Real EPE-Sensor = 0.0969380310601105
Real WCE-Sensor = -7.75504248480884
Real WDE-Sensor = -7.75504248480884
Real Wheel-Sensor = 10.7484888839451
wheel delta-rpm = 56.2203768839451

Real ESA Sensor = 0.0982940875249025
esa omega = 1.98304710265939e-4

DONE
[13] (diagnose)
bad-sensor =()
No fault found!
()
[14] (fail r-wce-a "zero)
ZERO
[15] (describe r-wce-a)

INSTANCE DESCRIPTION

Instance of Class AMPLIFIER

Class Variables :

Instance Variables
OUTPUT-LIST (R-WDE-A R-WCE-SENSOR)
INPUT-LIST (R-EPE-B)
STATE : -7.75504248480884
STATUS : ZERO
NAME : R-WCE-A
GAIN : -80
LIMIT : 25
TOLERANCE 0.01
FAULT-LIST (HIGH LOW ZERO LATCHUP LATCHDOWN)

()
[16] (sp)
Change COMMAND-i to 0.0982940875249025.
Change M-EPE-A to 0.0959350294243049.
Change M-WCE-A to -7.67480235394439.
Change M-WDE-A to -7.67480235394439.
Change M-WHEEL-A to 10.6372760625669.
Change M-ESA-A to 0.0970503050326564.
Change M-ESA-SENSOR to 0.0970503050326564.
Change M-WHEEL-SENSOR to 10.6372760625669.
Change M-WDE-SENSOR to -7.67480235394439.
Change M-WCE-SENSOR to -7.67480235394439.
Change M-EPE-SENSOR tp 0.0959350294243049.
Change R-EPE-A to ().
Change R-WCE-A to 0.
Change R-WDE-A to 0..
Change R-WHEEL-A to 0..
Change R-ESA-A to 0.0971578015350787.
Change R-ESA-SENSOR to 0.0971578015350787.
Change R-WHEEL-SENSOR to 0..
Change R-WDE-SENSOR to 0..
Change R-WCE-SENSOR to 0.
Change R-EPE-A to 0.0959350294243049.
Change R-WCE-A to 0.
Change R-EPE-SENSOR to 0.095935029424304c.

Model EPE-Sensor = 0.0959350294243049
Mode] WCE-Sensor = -7.67480235394439
Model WDE-Sensor = -7.67480235394439
Model Wheel-Sensor = 10.6372760625669

wheel delta-rpm = 66.857652946512
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Model ESA-Sensor = 0.0970503050326564
esa omega = 2.3582530447968le-4

Real EPE-Sensor = 0.0959350294243049
Real WCE-Sensor = 0
Real WDE-Sensor = 0.
Real Wheel-Sensor = 0.

wheel delta-rpm = 56.2203768839451
Real ESA Sensor = 0.0971578015350787

esa omega = 1.98304710265939e-4

DONE
[17] (describe r-wce-a)

INSTANCE DESCRIPTION

Instance of Class AMPLIFIER

Class Variables :

Instance Variables
OUTPUT-LIST (R-WDE-A R-WCE-SENSOR)
INPUT-LIST (R-EPE-B)
STATE : 0
STATUS : ZERO
NAME : R-WCE-A
GAIN : -80
LIMIT : 25
TOLERANCE : 0.01
FAULT-LIST (HIGH LOW ZERO LATCHUP LATCHDOWN)

()
[13] (diagnose)
bad-sensor =M-WCE-SENSOR
suspect list =(M-WCE-A M-EPE-B)
checking suspect: M-WCE-A
checking fault: HIGH
Change M-WCE-A to -2.67480235394439.
Change M-WDE-A to -2.67480235394439.
Change M-WHEEL-A to 3.70727606256693.
Change M-ESA-A to 0.0956615616337647.
Change M-ESA-SENSOR to 0.0956615616337647.
Change M-WHEEL-SENSOR to 3.70727606256693.
Change M-WDE-SENSOR to -2.67480235394439.
Change M-WCE-SENSOR to -2.67480235394439.
disc sensor from all= M-WCE-SENSOR
checking fault: LOW
Change M-WCE-A to -12.6748023539444.
Change M-WDE-A to -12.6748023539444.
Change M-WHEEL-A to 17.5672760625669.
Change M-ESA-A to 0.094Ls578252300284.
Change M-ESA-SENSOF to 0.0940578252300284.
Change M-WHEEL-SENSOR to 17.5672760625669.
Change M-WDE-SENSOR to -12.6748023539444.
Change M-WCE-SENSOR to -12.6748023539444.
disc sensor from all= M-WCE-SENSOR
checking fault: ZERO
Change M-WCE-A to 0.
Change M-WDE-A to 0..
Change M-WHEEL-A to 0..
Change M-ESA-A to O.0Q22765602256703 .
Change M-ESA-SENSOR to 0.0922765602256703.
Change M-WHEEL-SENSOR to 0..
Change M-WDE-SENSOR to 0..
Change M-WCE-SENSOR to 0.
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disc sensor from all= ()
suspect list =(M-EPE-B)
checking suspect: M-EPE-B
checking fault: HIGH
Change M-EPE-A to 5.
Change M-WCE-A to -25.
Change M-WDE-A to -25..
Change M-WHEEL-A to 34.65.
Change M-ESA-A to 0.0901451347303156.
Change M-ESA-SENSOR to 0.0901451347303156.
Change M-WHEEL-SENSOR to 34.65.
Change M-WDE-SENSOR to -25..
Change M-WCE-SENSOR to -25.
Change M-EPE-SENSOR to 5.
disc sensor from all= M-EPE-SENSOR
checking fault: LOW
Change M-EPE-A to -4.9040649705757.
Change M-WCE-A to 25.
Change M-WDE-A to 25..
Change M-WHEEL-A to -34.65.
Change M-ESA-A to 0.0880137092349609.
Change M-ESA-SENSOR to 0.0880137092349609.
Change M-WHEEL-SENSOR to -34.65.
Change M-WDE-SENSOR to 25..
Change M-WCE-SENSOR to 25.
Change M-EPE-SENSOR to -4.9040649705757.
disc sensor from all= M-EPE-SENSOR
checking fault: ZERO
Change M-EPE-A to 0.
Change M-WCE-A to 0.
Change M-WDE-A to 0..
Change M-WHEEL-A to 0..
Change M-ESA-A to 0.0862324442306029.
Change M-ESA-SENSOR to 0.0862324442306029.
Change M-WHEEL-SENSOR to 0..
Change M-WDE-SENSOR to 0..
Change M-WCE-SENSOR to 0.
Change M-EPE-SENSOR to 0.
disc sensor from all= M-EPE-SENSOR
checking fault: LATCHUP
Change M-EPE-A to 5.
Change M-WCE-A to -25.
Change M-WDE-A to -25..
Change M-WHEEL-A to 34.65.
Change M-ESA-A to 0.0841010187352482.
Change M-ESA-SENSOR to 0.0841010187352482.
Change M-WHEEL-SENSOR to 34.65.
Change M-WDE-SENSOR to -25..
Change M-WCE-SENSOR to -25.
Change M-EPE-SENSOR to 5.
disc sensor from all= M-EPE-SENSOR
checking fault: LATCHDOWN
Change M-EPE-A to -5.
Change M-WCE-A to 25.
Change M-WDE-A to 25..
Change M-WHEEL-A to -34.65.
Change M-ESA-A to 0.0819695932398935.
Change M-ESA-SENSOR to 0.0819695932398935.
Change M-WHEEL-SENSOR to -34.65.
Change M-WDE-SENSOR to 25..
Change M-WCE-SENSOR to 25.
Change M-EPE-SENSOR to -5.
disc sensor from all= M-EPE-SENSOR
suspect list =()
The culprit is: M-WCE-A
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()
[19] (wce-b-on)
()
[20] (sp)
Change COMMAND-I to 0.0971578015350787.
Change M-EPE-A to 0.0948260142982368.
Change M-WCE-A to -7.58608114385895.
Change M-WDE-A to -7.58608114385895.
Change M-WHEEL-A to 10.5143084653885.
Change M-ESA-A to 0.0800820743996125.
Change M-ESA-SENSOR to 0.0800820743996125.
Change M-WHEEL-SRNSOR to 10.5143084653885.
Change M-WDE-SENSOR to -7.58608114385895.
Change M-WCE-SENSOR to -7.58608114385895.
Change M-EPE-SENSOR to 0.0948260142982368.
Change R-EPE-A to ().
Change R-WCE-A to -7.67480235394439.
Change R-WDE-A to -7.67480235394439.
Change R-WHEEL-A to 10.6372760625669.
Change R-ESA-A to 0.0959140190428325.
Change R-ESA-SENSOR to 0.0959140190428325.
Change R-WHEEL-SENSOR to 10.6372760625669.
Change R-WDE-SENSOR to -7.67480235394439.
Change R-WCE-SENSOR to -7.67480235394439.
Change R-EPE-A to 0.0948260142982368.
Change R-WCE-A to -7.58608114385895.
Change R-WDE-A to -7.58608114385895.
Change R-WHEEL-A to 10.5143084653885.
Change R-ESA-A to 0.094456486212241.
Change R-ESA-SENSOR to 0.094456486212241.
Change R-WHEEL-SENSOR to 10.5143084653885.
Change R-WDE-SENSOR to -7.58608114385895.
Change R-WCE-SENSOR to -7.58608114385895.
Change R-EPE-SENSOR to 0.0948260142982368.

Model EPE-Sensor = 0.0948260142982368
Model WCE-Sensor = -7.58608114385895
Model WDE-Sensor = -7.58608114385895
Model Wheel-Sensor = 10.5143084653885

wheel delta-rpm = 98.6465135370343
Model ESA-Sensor = 0.0800820743996125

esa omega = 3.47953346632456e-4

Real EPE-Sensor = 0.0948260142982368
Real WCE-Sensor = -7.58608114385895
Real WDE-Sensor = -7.58608114385895
Real Wheel-Sensor = 10.5143084653885
wheel delta-rpm = 77.3719614119005

Real ESA Sensor = 0.094456486212241
esa omega = 2.72912158204972e-4

DONE
[21] (fail r-wde-a low)
LOW
[22] (sp)
Change COMMAND-1 to 0.094456486212241.
Change M-EPE-A to 0.0921895305431472.
Change M-WCE-A to -7.37516244345178.
Change M-WDE-A to -7.37516244345178.
Change M-WHEEL-A to 10.2219751466242.
Change M-ESA-A to 3.0779850021033133.
Change M-ESA-SENSOR to 0.0779850021033133.
Change M-WHEEL-SENSOR to 10.2219751466242.
Change M-WDE-SENSOR to -7.37516244345178.
Change M-WCE-SENSOR to -7.37516244345178.
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Change M-EPE-SENSOR to 0.0921895305431472.
Change R-EPE-A to ().
Change R-EPE-A to 0.0921895305431472.
Change R-WCE-A to -7.37516244345178.
Change R-WDE-A to -12.3751624434518.
Change R-WHEEL-A to 17.1519751466242.
Change R-ESA-A to 0.092719367827432.
Change R-ESA-SENSOR to 0.092719367827432.
Change R-WHEEL-SENSOR to 17.1519751466242.
Change R-WDE-SENSOP to -12.3751624434518.
Change R-WCE-SENSOR to -7.37516244345178.
Change R-EPE-SENSOR to 0.0921895305431472.

Model EPE-Sensor = 0.0921895305431472
Model WCE-Sensor = -7.37516244345178
Model WDE-Sensor = -7.37516244345178
Model Wheel-Sensor = 10.2219751466242

wheel delta-rpm = 108.868488683659
Model ESA-Sensor = 0.0779850021033133

esa omega = 3.84009060452756e-4

Real EPE-Sensor = 0.0921895305431472
Real WCE-Sensor = -7.37516244345178
Real WDE-Sensor = -12.3751624434518
Real Wheel-Sensor = 17.1519751466242

wheel delta-rpm = 94.5239365585246
Real ESA Sensor = 0.092719367827432

esa omega = 3.3341188535837e-4

DONE
[23] (diagnose)
bad-sensor =M-WDE-SENSOR
suspect list =(M-WDE-A M-WCE-B M-EPE-B)
checking suspect: M-WDE-A
checking fault: HIGH
Change M-WDE-A to -2.37516244345178.
Change M-WHEEL-A to 3.29197514662416.
Change M-ESA-A to 0.0757513626650232.
Change M-ESA-SENSOR to 0.0757513626650232.
Change M-WHEEL-SENSOR to 3.29197514662416.
Change M-WDE-SENSOR to -2.37516244345178.
disc sensor from all= M-WDE-SENSOR
checking fault: LOW
Change M-WDE-A to -12.3751624434518.
Change M-WHEEL-A to 17.1519751466242.
Change M-ESA-A to 0.0733111239865428.
Change M-ESA-SENSOR to 0.0733111239865428.
Change M-WHEEL-SENSOR to 17.1519751466242.
Change M-WDE-SENSOR to -12.3751624434518.
disc sensor from all= ()
suspect list =(M-WCE-B M-EPE-B)
checking suspect: M-WCE-B
checking fault: HIGH
Change M-WCE-A to -2.37516244345178.
Change M-WDE-A to -2.37516244345178.
Change M-WHEEL-A to 3.29197514662416.
Change M-ESA-A to 0.070664286067872.
Change M-ESA-SENSOR to 0.070664286067872.
Change M-WHEEL-SENSOR to 3.29197514662416.
Change M-WDE-SENSOR to -2.37516244345178.
Change M-WCE-SENSOR to -2.37516244345178.
disc sensor from all= M-WCE-SENSOR
checking fault: LOW
Change M-WCE-A to -12.3751624434518.
Change M-WDE-A to -12.3751624434518.
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Change M-WHEEL-A to 17.1519751466242.
Change M-ESA-A to 0.0678108489090109.
Change M-ESA-SENSOR to 0.0678108489090109.
Change M-WHEEL-SENSOR to 17.1519751466242.
Change M-WDE-SENSOR to -12.3751624434518.
Change M-WCE-SENSOR to -12.3751624434518.
disc sensor from all= M-WCE-SENSOR
checking fault: ZERO
Change M-WCE-A to 0.
Change M-WDE-A to 0..
Change M-WHEEL-A to 0..
Change M-ESA-A to 0.0647840800318554.
Change M-ESA-SENSOR to 0.0647840800318554.
Change M-WHEEL-SENSOR to 0..
Change M-WDE-SENSOR to 0..
Change M-WCE-SENSOR to 0.
disc sensor from all= M-WCE-SENSOR
checking fault: LATCHUP
Change M-WCE-A to 25.
Change M-WDE-A to 25..
Change M-WHEEL-A to -34.65.
Change M-ESA-A to 0.0621074716456964.
Change M-ESA-SENSOR to 0.0621074716456964.
Change M-WHEEL-SENSOR to -34.65.
Change M-WDE-SENSOR to 25..
Change M-WCE-SENSOR to 25.
disc sensor from all= M-WCE-SENSOR
checking fault: LATCHDOWN
Change M-WCE-A to -25.
Change M-WDE-A to -25..
Change M-WHEEL-A to 34.65.
Change M-ESA-A to 0.0594308632595375.
Change M-ESA-SENSOR to 0.0594308632595375.
Change M-WHEEL-SENSOR to 34.65.
Change M-WDE-SENSOR to -25..
Change M-WCE-SENSOR to -25.
disc sensor from all= M-WCE-SENSOR
suspect list =(M-EPE-B)
checking suspect: M- 'E-B
checking fault: HIGH
Change M-EPE-A to 5.
Change M-EPE-SENSOR to 5.
disc sensor from all= M-EPE-SENSOR
checking fault: LOW
Change M-EPE-A to -4.90781046945685.
Change M-WCE-A to 25.
Change M-WDE-A to 25..
Change M-WHEEL-A to -34.65.
Change M-ESA-A to 0.0567542548733786.
Change M-ESA-SENSOR to 0.0567542548733786.
Change M-WHEEL-SENSOR to -34.65.
Change M-WDE-SENSOR to 25..
Change M-WCE-SENSOR to 25.
Change M-EPE-SENSOR to -4.90781046945685.
disc sensor from all= M-EPE-SENSOR
checking fault: ZERO
Change M-EPE-A to 0.
Change M-WCE-A to 0.
Change M-WDE-A to 0..
Change M-WHEEL-A to 0..
Change M-ESA-A to 0.0544278069782162.
Change M-ESA-SENSOR to 0.0544278069782162.
Change M-WHEEL-SENSOR to 0..
Change M-WDE-SENSOR to 0..
Change M-WCE-SENSOR to 0.
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Change M-EPE-SENSOR to 0.
disc sensor from all= U-EPE-SENSOR
checking fault: LATCHUP
Change M-EPE-A to 5.
Change M-WCE-A to -25.
Change U-WDE-A to -25..
Change U-WHEEL-A to 34.65.
Change M-ESA-A to 0.0517511985920573.
Change U-ESA-SENSOR to 0.0517511985920573.
Change U-WHEEL-SENSOR to 34.65.
Change U-WDE-SENSOR to -25..
Change M-WCE-SENSOR to -25.
Change M-EPE-SENSOR to 5.
disc sensor from all= M-EPE-SENSOR
checking fault: LATCHDOWN
Change U-EPE-A to -5.
Change M-WCE-A to 25.
Change M-WDE-A to 25..
Change U-WHEEL-A to -34.65.
Change M-ESA-A to 0.0490745902058984.
Change M-ESA-SENSOR to 0.0490745902058984.
Change U-WHEEL-SENSOR to -34.65.
Change M-WDF.-SENSOR to 25..
Change M-WCE-SENSOR to 25.
Change M-EPE-SENSOR to -5.
disc sensor from all= U-EPE-SENSOR
suspect list =()
The culprit is: U-WDE-A

[241 (fix r-wde-a)
ON
[25] (ep)
Change COMMAND-i to 0.092719367827432.
Change U-EPE-A to 0.0904941029995736.
Change M-WCE-A to -7.23952823996589.
Change U-WDE-A to -7.23952823996589.
Change U-WHEEL-A to 10.0339861405927.
Change M-ESA-A to 0.0466467424402125.
Change M-ESA-SENSOR to 0.0466467424402125.
Change M-WHEEL-SENSOR to 10.0339861405927.
Change U-WDE-SENSOR to -7.23952823996589.
Change U-WCE-SENSOR to -7.23952823996589.
Change U-EPE-SENSOR to 0.0904941029995736.
Change R-EPE-A to ().
Change R-EPE-A to 0.0904941029995736.
Change R-WCE-A to -7.23952823996589.
Change R-WDE-A to -7.23952823996589.
Change R-WHEEL-A to 10.0339861405927.
Change R-ESA-A to 0.0907075178538049.
Change R-ESA-SENSOR to 0.0907075178538049.
Change R-WHEEL-SENSOR to 10.0339861405927.
Change R-WDE-SENSOR to -7.23952823996589.
Change R-WCE-SENSOR to -7.23952823996589.
Change R-EPE-SENSOR to 0.0904941029995736.

Model EPE-Sensor = 0.0904941029995736
Model WCE-Sensor = -7.23952823996589
Uodel WDE-Sensor = -7.23952823996589
Model Wheel-Sensor = 10.0339861405927

wheel delta-rpm = 125.140375410748
Uodel ESA-Sensor = 0.0466467424402125

esa omega = 4.41404474033079e-4

Real EPE-Sensor = 0.0904941029995736
Real WCE-Sensor = -7.23952823996589
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Real WDE-Sensor = -7.23952823996589
Real Wheel-Sensor = 10.0339861405927

wheel delta-rpm = 104.557922699117
Real ESA Sensor = 0.0907075178538049

esa omega = 3.68804510322983e-4

DONE
(26] (diagnose)
bad-sensor =()
No fault foundi

(27] (fail r-wce-b 'zero)
ZERO
[28] (sp)
Change COMMAND-l to 0.0907075178538049.
Change M-EPE-A to 0.0885305374253136.
Change M-WCE-A to -7.08244299402509.
Change M-WDE-A to -7.08244299402509.
Change M-WHEEL-A to 9.81626598971878.
Change M-ESA-A to 0.0440182951353532.
Change M-ESA-SENSOR to 0.0440182951353532.
Change M-WHEEL-SENSOR to 9.81626598971878.
Change M-WDE-SENSOR to -7.08244299402509.
Change M-WCE-SENSOR to -7.08244299402509.
Change M-EPE-SENSOR to 0.0885305374253136.
Change R-EPE-A to ().
Change R-WCE-A to 0.
Change R-WDE-A to 0..
Change R-WHEEL-A to 0..
Change R-ESA-A to 0.0885942680096543.
Change R-ESA-SENSOR to 0.0885942680096543.
Change R-WHEEL-SENSOR to 0..
Change R-WDE-SENSOR to 0..
Change R-WCE-SENSOR to 0.
Change R-EPE-A to 0.0885305374253136.
Change R-WCE-A to 0.
Change R-EPE-SENSOR to 0.0885305374253136.

Model EPE-Sensor = 0.0885305374253136
Model WCE-Sensor = -7.08244299402509
Model WDE-Sensor = -7.08244299402509
Model Wheel.-Sensor = 9.81626598971878

wheel delta-rpm = 134.956641400467
Model ESA-Sensor = 0.0440182951353532

esa omega = 4.7602914022845e-4

Real EPE-Sensor =0.0885305374253136
Real WCE-Sensor =0
Real WDE-Sensor =0.

Real Wheel-Sensor = 0.
wheel delta-rpm =104.557922699117

Real ESA Sensor =0.0885942680096543
esa omega = 3.68804510322983e-4

DONE
[291 (diagnose)
bad-sensor =M-WCE-SEYSOR
suspect list =(M-WCE-B M-EPE-B)
checking suspect: M-WCE-B
checking fault: HIGH
Change M-WCE-A to -2.08244299402509.
Change M-WDE-A to -2.08244299402509.
Change M-WHEEL-A to 2.88626598971878.
Change M-ESA-A to 0.0412614805913938.
Change M-ESA-SENSOR to 0.0412614805913938.
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Change M-WHEEL-SENSOR to 2.88626598971878.
Change M-WDE-SENSOR to -2.08244299402509.
Change M-WCE-SENSOR to -2.08244299402509.
disc sensor from all= M-WCE-SENSOR
checking fault: LOW
Change M-WCE-A to -12.0824429940251.
Change M-WDE-A to -12.0824429940251.
Change M-WHEEL-A to 16.7462659897188.
Change M-ESA-A to 0.0383062667101348.
Change M-ESA-SENSOR to 0.0383062667101348.
Change M-WHEEL-SENSOR to 16.7462659897188.
Change M-WDE-SENSOR to -12.0824429940251.
Change M-WCE-SENSOR to -12.0824429940251.
disc sensor from all= M-WCE-SENSOR
checking fault: ZERO
Change M-WCE-A to 0.
Change M-WDE-A to 0..
Change M-WHEEL-A to 0..
Change M-ESA-A to 0.0351818210620269.
Change M-ESA-SENSOR to 0.0351818210620269.
Change M-WHEEL-SENSOR to 0..
Change M-WDE-SENSOR to 0..
Change M-WCE-SENSOR to 0.
disc sensor from all= ()
suspect list =(M-EPE-B)
checking suspect: M-EPE-B
checking fault: HIGH
Change M-EPE-A to 5.
Change M-WCE-A to -25.
Change M-WDE-A to -25..
Change M-WHEEL-A to 34.65.
Change M-ESA-A to 0.0317072149229223.
Change M-ESA-SENSOR to 0.0317072149229223.
Change H-WHEEL-SENSOR to 34.65.
Change M-WDE-SENSOR to -25..
Change M-WCE-SENSOR to -25.
Change M-EPE-SENSOR to 5.
disc sensor from all= M-EPE-SENSOR
checking fault: LOW
Change M-EPE-A to -4.91146946257469.
Change M-WCE-A to 25.
Change M-WDE-A to 25..
Change M-WHEEL-A to -34.65.
Change M-ESA-A to 0.0282326087838177.
Change M-ESA-SENSOR to 0.0282326087838177.
Change M-WHEEL-SENSOR to -34.65.
Change M-WDE-SENSOR to 25..
Change M-WCE-SENSOR to 25.
Change M-EPE-SENSOR to -4.91146946257469.
disc sensor from all= M-EPE-SENSOR
checking fault: ZERO
Change M-EPE-A to 0.
Change M-WCE-A to 0.
Change M-WDE-A to 0..
Change M-WHEEL-A to 0..
Change M-ESA-A to 0.0251081631357097.
Change M-ESA-SENSOR to 0.0251081631357097.
Change M-WHEEL-SENSOR to 0..
Change M-WDE-SENSOR to 0..
Change M-WCE-SENSOR to 0.
Change M-EPE-SENSOR to 0.
disc sensor from all= M-EPE-SENSOR
checking fault: LATCHUP
Change M-EPE-A to 5.
Change M-WCE-A to -25.
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Change M-WDE-A to -25..
Change M-WHEEL-A to 34.65.
Change M-ESA-A to 0.0216335569966051.
Change M-ESA-SENSOR to 0.0216335569966051.
Change M-WHEEL-SENSOR to 34.65.
Change M-WDE-SENSOR to -25..
Change M-WCE-SENSOR to -25.
Change M-EPE-SENSOR to 5.
disc sensor from all= M-EPE-SENSOR
checking fault: LATCHDOWN
Change M-EPE-A to -5.
Change M-WCE-A to 25.
Change M-WDE-A to 25..
Change M-WHEEL-A to -34.65.
Change M-ESA-A to 0.0181589508575005.
Change M-ESA-SENSOR to 0.0181589508575005.
Change M-WHEEL-SENSOR to -34.65.
Change M-WDE-SENSOR to 25..
Change M-WCE-SENSOR to 25.
Change M-EPE-SENSOR to -5.
disc sensor from all= M-EPE-SENSOR
suspect list =()
The culprit is: M-WCE-B
()
[30] (fail r-wde-a 'latchdown)
LATCHDOWN
[31] (sp)
Change COMMAND-I to 0.0885942680096543.
Change M-EPE-A to 0.0864680055774226.
Change M-WCE-A to -6.91744044619381.
Change M-WDE-A to -6.91744044619381.
Change M-WHEEL-A to 9.58757245842461.
Change M-ESA-A to 0.0149376166356693.
Change M-ESA-SENSOR to 0.0149376166356693.
Change M-WHEEL-SENSOR to 9.58757245842461.
Change M-WDE-SENSOR to -6.91744044619381.
Change M-WCE-SENSOR to -6.91744044619381.
Change M-EPE-SENSOR to 0.0864680055774226.
Change R-EPE-A to ().
Change R-WCE-A to 0.
Change R-WDE-A to -25.
Change R-WHEEL-A to 34.65.
Change R-ESA-A to 0.0861308576745069.
Change R-ESA-SENSOR to 0.0861308576745069.
Change R-WHEEL-SENSOR to 34.65.
Change R-WDE-SENSOR to -25.
Change R-EPE-A to 0.0864680055774226.
Change R-WCE-A to 0.
Change R-WDE-A to -25.
Change R-EPE-SENSOR to 0.0864680055774226.

Model EPE-Sensor = 0.0864680055774226
Model WCE-Sensor = -6.91744044619381
Model WDE-Sensor = -6.91744044619381
Model Wheel-Sensor = 9.58757245842461

wheel delta-rpm = 164.176745838329
Model ESA-Sensor = 0.0149376166356693

esa omega = 5.79096473918727e-4

Real EPE-Sensor = 0.0864680055774226
Real WCE-Sensor = 0
Real WDE-Sensor = -25
Real Wheel-Sensor = 34.65

wheel delta-rpm = 139.207922699117
Real ESA Sensor = 0.0861308576745069
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esa omega = 4.91024576988474e-4

DONE
(32) (diagnose)
bad-sensor =M-WCE-SENSOR
suspect list =(M-WCE-B M-EPE-B)
checking suspect: M-WCE-B
checking fault: HIGH
Change M-WCE-A to -1.9174404461938.
Change M-WDE-A to -1.9174404461938.
Change M-WHEEL-A to 2.65757245842461.
Change M-ESA-A to 0.0115925373645912.
Change M-ESA-SENSOR to 0.0115925373645912.
Change M-WHEEL-SENSOR to 2.65757245842461.
Change M-WDE-SENSOR to -1.9174404461938.
Change M-WCE-SENSOR to -1.9174404461938.
disc sensor from all= M-WCE-SENSOR
checking fault: LOW
Change M-WCE-A to -11.9174404461938.
Change M-WDE-A to -11.9174404461938.
Change M-WHEEL-A to 16.5175724584246.
Change M-ESA-A to 0.0080536809460667.
Change M-ESA-SENSOR to 0.0080536809460667.
Change M-WHEEL-SENSOR to 16.5175724584246.
Change M-WDE-SENSOR to -11.9174404461938.
Change M-WCE-SENSOR to -11.9174404461938.
disc sensor from all= M-WCE-SENSOR
checking fault: ZERO
Change M-WCE-A to 0.
Change M-WDE-A to 0..
Change M-WHEEL-A to 0..
Change M-ESA-A to 0.00434790385561972.
Change M-ESA-SENSOR to 0.00434790385561972.
Change H-WHEEL-SENSOR to 0..
Change M-WDE-SENSOR to 0..
Change M-WCE-SENSOR to 0.
disc sensor from all= M-WDE-SENSOR
checking fault: LATCHUP
Change M-WCE-A to 25.
Change M-WDE-A to 25..
Change M-WHEEL-A to -34.65.
Change M-ESA-A to 9.92287256169378e-4.
Change M-ESA-SENSOR to 9.92287256169378e-4.
Change M-WHEEL-SENSOR to -34.65.
Change M-WDE-SENSOR to 25..
Change M-WCE-SENSOR to 25.
disc sensor from all= M-WCE-SENSOR
checking fault: LATCHDOWN
Change M-WCE-A to -25.
Change M-WDE-A to -25..
Change M-WHEEL-A to 34.65.
Change M-ESA-A to -0.00236332934328097.
Change M-ESA-SENSOR to -0.00236332934328097.
Change H-WHEEL-SENSOR to 34.65.
Change M-WDE-SENSOR to -25..
Change M-WCE-SENSOR to -25.
disc sensor from all= M-WCE-SENSOR
suspect list =(M-EPE-B)
checking suspect: M-EPE-B
checking fault: HIGH
Change M-EPE-A to 5.
Change M-EPE-SENSOR to 5.
disc sensor from all= M-EPE-SENSOR
checking fault: LOW
Change M-EPE-A to -4.91353199442258.
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Change M-WCE-A to 25.
Change M-WDE-A to 25..
Change M-WHEEL-A to -34.65.
Change M-ESA-A to -0.00571894594273132.
Change M-ESA-SENSOR to -0.00571894594273132.
Change M-WHEEL-SENSOR to -34.65.
Change M-WDE-SENSOR to 25..
Change M-WCE-SENSOR to 25.
Change M-EPE-SENSOR to -4.91353199442258.
disc sensor from all= M-EPE-SENSOR
checking fault: ZERO
Change M-EPE-A to 0.
Change M-WCE-A to 0.
Change M-WDE-A to 0..
Change M-WHEEL-A to 0..
Change M-ESA-A to -0.00872440205118503.
Change M-ESA-SENSOR to -0.00872440205118503.
Change M-WHEEL-SENSOR to 0..
Change M-WDE-SENSOR to 0..
Change M-WCE-SENSOR to 0.
Change M-EPE-SENSOR to 0.
disc sensor from all= M-EPE-SENSOR
checking fault: LATCHUP
Change M-EPE-A to 5.
Change M-WCE-A to -25.
Change M-WDE-A to -25..
Change M-WHEEL-A to 34.65.
Change M-ESA-A to -0.0120800186506354.
Change M-ESA-SENSOR to -0.0120800186506354.
Change M-WHEEL-SENSOR to 34.65.
Change M-WDE-SENSOR to -25..
Change M-WCE-SENSOR to -25.
Change M-EPE-SENSOR to 5.
disc sensor from all= M-EPE-SENSOR
checking fault: LATCHDOWN
Change M-EPE-A to -5.
Change M-WCE-A to 25.
Change M-WDE-A to 25..
Change M-WHEEL-A to -34.65.
Change M-ESA-A to -0.0154356352500857.
Change M-ESA-SENSOR to -0.0154356352500857.
Change M-WHEEL-SENSOR to -34.65.
Change M-WDE-SENSOR to 25..
Change M-WCE-SENSOR to 25.
Change M-EPE-SENSOR to -5.
disc sensor from all= M-EPE-SENSOR
suspect list =()
*** Fault detected: Cause Unknown! ***
()
(33] (wce-b-on)()
[34] (wde-a-on)
()
[35] (sp)
Change COMMAND-1 to 0.0861308576745069.
Change M-EPE-A to 0.0840637170903188.
Change M-WCE-A to -6.7250973672255.
Change M-WDE-A to -6.7250973672255.
Change M-WHEEL-A to 9.32098495097455.
Change M-ESA-A tc -0.0185352858943837.
Change M-ESA-SENSOR to -0.0185352858943837.
Change M-WHEEL-SENSOR to 9.32098495097455.
Change M-WDE-SENSOR to -6.7250973672255.
Change M-WCE-SENSOR to -6.7250973672255.
Change M-EPE-SENSOR to 0.0840637170903188.
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Change R-EPE-A to (.
Change R-WCE-A to -6.91744044619381.
Change R-WDE-A to -6.91744044619381.
Change R-WHEEL-A to 9.58757245842461.
Change R-ESA-A to 0.0832203982746398.
Change R-ESA-SENSOR to 0.0832203982746398.
Change R-WHEEL-SENSOR to 9.58757245842461.
Change R-WDE-SENSOR tc -6.91744044619381.
Change R-WCE-SENSOR to -6.91744044619381.
Change R-EPE-A to 0.0840637170903188.
Change R-WCE-A to -6.7250973672255.
Change R-WDE-A to -6.7250973672255.
Change R-WHEEL-A to 9.32098495097455.
Change R-ESA-A to 0.0801188557652052.
Change R-ESA-SENSOR to 0.0801188557652052.
Change R-WHEEL-SENSOR to 9.32098495097455.
Change R-WDE-SENSOR to -6.7250973672255.
Change R-WCE-SENSOR to -6.7250973672255.
Change R-EPE-SENSOR to 0.0840637170903188.

Model EPE-Sensor = 0.0840637170903188
Model WCE-Sensor = -6.7250973672255
Model WDE-Sensor = -6.7250973672255
Model Wheel-Sensor = 9.32098495097455

wheel delta-rpm = 158.022875706153
Model ESA-Sensor = -0.0185352858943837

esa omega = 5.57390083794475e-4

Real EPE-Sensor = 0.0840637170903188
Real WCE-Sensor = -6.7250973672255
Real WDE-Sensor = -6.7250973672255
Real Wheel-Sensor = 9.32098495097455
wheel delta-rpm = 158.116480108517

Real ESA Sensor = 0.0801188557652052
esa omega = 5.57720252230178e-4

DONE
[36] (diagnose)
bad-sensor =()
No fault found!
()
[37] (fail r-wheel-a 'zero)
ZERO
[38] (sp)
Change COMMAND-1 to 0.0801188557652052.
Change M-EPE-A to 0.0781960032268403.
Change M-WCE-A to -6.25568025814722.
Change M-WDE-A to -6.25568025814722.
Change M-WHEEL-A to 8.67037283779205.
Change M-ESA-A to -0.0218167507573545.
Change M-ESA-SENSOR to -0.0218167507573545.
Change M-WHEEL-SENSOR to 8.67037283779205.
Change M-WDE-SENSOR to -6.25568025814722.
Change M-WCE-SENSOR to -6.25568025814722.
Change M-EPE-SENSOR to 0.0781960032268403.
Change R-EPE-A to ().
Change R-EPE-A to 0.0781960032268403.
Change R-WCE-A to -6.25568025814722.
Change R-WDE-A to -6.25568025814722.
Change R-WHEEL-A to 0.
Change R-ESA-A to 0.0769231187199263.
Change R-ESA-SENSOR to 0.0769231187199263.
Change R-WHEEL-SENSOR to 0.
Change R-WDE-SENSOR to -6.25568025814722.
Change R-WCE-SENSOR to -6.25568025814722.
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Change R-EPE-SENSOR to 0.0781960032268403.

Model EPE-Sensor = 0.0781960032268403
Model WCE-Sensor = -6.25568025814722
Model WDE-Sensor = -6.25568025814722
Model Wheel-Sensor = 8.67037283779205

wheel delta-rpm = 166.693248543945
Model ESA-Sensor = -0.0218167507573545

esa omega = 5.87972870122025e-4

Real EPE-Sensor = 0.0781960032268403
Real WCE-Sensor = -6.25568025814722
Real WDE-Sensor = -6.25568025814722
Real Wheel-Sensor = 0

wheel delta-rpm = 158.116480108517
Real ESA Sensor = 0.0769231187199263

esa omega = 5.57720252230178e-4

DONE
[39] (diagnose)
bad-sensor =M-WHEEL-SENSOR
suspect list =(M-WHEEL-A M-WDE-A M-WCE-B M-EPE-B)
checking suspect: M-WHEEL-A
checking fault: HIGH
Change M-WHEEL-A to 13.670372837792.
Change M-ESA-A to -0.0253239831953612.
Change M-ESA-SENSOR to -0.0253239831953612.
Change M-WHEEL-SENSOR to 13.670372837792.
disc sensor from all= M-WHEEL-SENSOR
checking fault: LOW
Change M-WHEEL-A to 3.67037283779205.
Change M-ESA-A to -0.0290064549990247.
Change M-ESA-SENSOR to -0.0290064549990247.
Change M-WHEEL-SENSOR to 3.67037283779205.
disc sensor from all= M-WHEEL-SENSOR
checking fault: ZERO
Change M-WHEEL-A to 0.
Change M-ESA-A to -0.0327260182761376.
Change M-ESA-SENSOR to -0.0327260182761376.
Change M-WHEEL-SENSOR to 0.
disc sensor from all= ()
suspect list =(M-WDE-A M-WCE-B M-EPE-B)
checking suspect: M-WDE-A
checking fault: HIGH
Change M-WDE-A to -1.25568025814722.
Change M-WHEEL-A to 1.74037283779205.
Change M-ESA-A to -0.0364631691378797.
Change M-ESA-SENSOR to -0.0364631691378797.
Change M-WHEEL-SENSOR to 1.74037283779205.
Change M-WDE-SENSOR to -1.25568025814722.
disc sensor from all= M-WDE-SENSOR
checking fault: LOW
Change M-WDE-A to -11.2556802581472.
Change M-WHEEL-A to 15.6003728377921.
Change M-ESA-A to -0.0403755593652785.
Change M-ESA-SENSOR to -0.0403755593652785.
Change M-WHEEL-SENSOR to 15.6003728377921.
Change M-WDE-SENSOR to -11.2556802581472.
disc sensor from all= M-WDE-SENSOR
checking fault: ZERO
Change M-WDE-A to 0.
Change M-WHEEL-A to 0..
Change M-ESA-A to -0.0444456013737052.
Change M-ESA-SENSOR to -0.0444456013737052.
Change M-WHEEL-SENSOR to 0..
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Change M-WDE-SENSOR to 0.
disc sensor from all= M-WDE-SENSOR
checking fault: LATCHUP
Change M-WDE-A to 25.
Change M-WHEEL-A to -34.65.
Change M-ESA-A to -0.0481654828911352.
Change M-ESA-SENSOR to -0.0481654828911352.
Change M-WHEEL-SENSOR to -34.65.
Change M-WDE-SENSOR to 25.
disc sensor from all= M-WDE-SENSOR
checking fault: LATCHDOWN
Change M-WDE-A to -25.
Change M-WHEEL-A to 34.65.
Change M-ESA-A to -0.0518853644085652.
Change M-ESA-SENSOR to -0.0518853644085652.
Change M-WHEEL-SENSOR to 34.65.
Change M-WDE-SENSOR to -25.
disc sensor from all= M-WDE-SENSOR
suspect list =(M-WCE-B M-EPE-B)
checking suspect: M-WCE-B
checking fault: HIGH
Change M-WCE-A to -1.25568025814722.
Change M-WDE-A to -1.25568025814722.
Change M-WHEEL-A to 1.74037283779205.
Change M-ESA-A to -0.055972994001621.
Change M-ESA-SENSOR to -0.055972994001621.
Change M-WHEEL-SENSOR to 1.74037283779205.
Change M-WDE-SENSOR to -1.25568025814722.
Change M-WCE-SENSOR to -1.25568025814722.
disc sensor from all= M-WCE-SENSOR
checking fault: LOW
Change M-WCE-A to -11.2556802581472.
Change M-WDE-A to -11.2556802581472.
Change M-WHEEL-A to 15.6003728377921.
Change M-ESA-A to -0.0602358629603336.
Change M-ESA-SENSOR to -0.0602358629603336.
Change M-WHEEL-SENSOR to 15.6003728377921.
Change M-WDE-SENSOR to -11.2556802581472.
Change M-WCE-SENSOR to -11.2556802581472.
disc sensor from all= M-WCE-SENSOR
checking fault: ZERO
Change M-WCE-A to 0.
Change M-WDE-A to 0..
Change M-WHEEL-A to 0..
Change M-ESA-A to -0.064656383700074.
Change M-ESA-SENSOR to -0.064656383700074.
Change M-WHEEL-SENSOR to 0..
Change M-WDE-SENSOR to 0..
Change M-WCE-SENSOR to 0.
disc sensor from all= M-WCE-SENSOR
checking fault: LATCHUP
Change M-WCE-A to 25.
Change M-WDE-A to 25..
Change M-WHEEL-A to -34.65.
Change M-ESA-A to -0.0687267439488177.
Change M-ESA-SENSOR to -0.0687267439488177.
Change M-WHEEL-SENSOR to -34.65.
Change M-WDE-SENSOR to 25..
Change M-WCE-SENSOR to 25.
disc sensor from all= M-WCE-SENSOR
checking fault: LATCHDOWN
Change M-WCE-A to -25.
Change M-WDE-A to -25..
Change M-WHEEL-A to 34.65.
Change M-ESA-A to -0.0727971041975614.
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Change M-ESA-SENSOR to -0.0727971041975614.
Change M-WHEEL-SENSOR to 34.65.
Change M-WDE-SENSOR to -25..
Change M-WCE-SENSOR to -25.
disc sensor from all= M-WCE-SENSOR
suspect list =(M-EPE-B)
checking suspect: M-EPE-B
checking fault: HIGH
Change M-EPE-A to 5.
Change M-EPE-SENSOR to 5.
disc sensor from all= M-EPE-SENSOR
checking fault: LOW
Change M-EPE-A to -4.92180399677316.
Change M-WCE-A to 25.
Change M-WDE-A to 25..
Change M-WHEEL-A to -34.65.
Change M-ESA-A to -0.0768674644463052.
Change M-ESA-SENSOR to -0.0768674644463052.
Change M-WHEEL-SENSOR to -34.65.
Change M-WDE-SENSOR to 25..
Change M-WCE-SENSOR to 25.
Change M-EPE-SENSOR to -4.92180399677316.
disc sensor from all= M-EPE-SENSOR
checking fault: ZERO
Change M-EPE-A to 0.
Change M-WCE-A to 0.
Change M-WDE-A to 0..
Change M-WHEEL-A to 0..
Change M-ESA-A to -0.0805876642040523.
Change M-ESA-SENSOR to -0.0805876642040523.
Change M-WHEEL-SENSOR to 0..
Change M-WDE-SENSOR to 0..
Change M-WCE-SENSOR to 0.
Change M-EPE-SENSOR to 0.
disc sensor from all= M-EPE-SENSOR
checking fault: LATCHUP
Change M-EPE-A to 5.
Change M-WCE-A to -25.
Change M-WDE-A to -25..
Change M-WHEEL-A to 34.65.
Change M-ESA-A to -0.084658024452796.
Change M-ESA-SENSOR to -0.084658024452796.
Change M-WHEEL-SENSOR to 34.65.
Change M-WDE-SENSOR to -25..
Change M-WCE-SENSOR to -25.
Change M-EPE-SENSOR to 5.
disc sensor from all= M-EPE-SENSOR
checking fault: LATCHDOWN
Change M-EPE-A to -5.
Change M-WCE-A to 25.
Change M-WDE-A to 25..
Change M-WHEEL-A to -34.65.
Change M-ESA-A to -0.0887283847015398.
Change M-ESA-SENSOR to -0.0887283847015398.
Change M-WHEEL-SENSOR to -34.65.
Change M-WDE-SENSOR to 25..
Change M-WCE-SENSOR to 25.
Change M-EPE-SENSOR to -5.
disc sensor from all= M-EPE-SENSOR
suspect list =()
The culprit is: M-WHEEL-A
()
(40) (transcript-off)
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Appendix L: Program Run - Combined Model

This listing is a diagnostic run, using filters in the real-world model, to ensure
an accurate simulation of the Satellite's pitch control channel, but using no filters in
the computer-world model, to ensure operation of the model-based reasoner. The
(sp) function had to be used several times between changes to the system to allow
the state-variables in those objects with filters to settle down.
To shorten this listing, the sensor readouts for most of these (sp) invocations has
been edited out.

[3] (reset-system)
OK
[4] (load "mpchl2.s")
OK
[5] (set-pitch .1)

Model EPE-Sensor = 0.0976
Model WCE-Sensor = -1.7324
Model WDE-Sensor = -1.7324
Model Wheel-Sensor = 2.4011064

wheel delta-rpm = 2.4011064
Model ESA-Sensor = 0.0999757352786159

esa omega = 8.46936173965186e-6

Real EPE-Sensor = 0.0976
Real WCE-Sensor = -5.5991168
Real WDE-Sensor = -3.8113110139316
Real Wheel-Sensor = 5.2824770653092

wheel delta-rpm = 9.23523973535579
Real ESA Sensor = 0.0998267815666702

esa omega = 3.25752270166515e-5

DONE
(6] (sp)
[7] (sp)
[8] (sp)
[10] (sp)
[11] (sp)

Model EPE-Sensor = 0.091316340712002
Model WCE-Sensor = -1.62086504763804
Model WDE-Sensor = -1.62086504763804
Model Wheel-Sensor = 2.24651895602632

wheel delta-rpm = 14.0074529717373
Model ESA-Sensor = 0.0999757352786159

esa omega = 4.94081337956554e-5

Real EPE-Sensor = 0.091316340712002
Real WCE-Sensor = -1.53836534943618
Real WDE-Sensor = -1.76473621808494
Real Wheel-Sensor = 2.44592439826572

wheel delta-rpm = 52.4578350883391
Real ESh Sensor = 0.0915409842180378

esa omega = 1.85033191966064e-4

DONE
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[12] (diagnose)
No fault found!()
(13] (fail r-epe-a 'zero)
ZERO
[14] (sp)

Model EPE-Sensor = 0.0893440005968049
Model WCE-Sensor = -1.58585601059329
Model WDE-Sensor = -1.58585601059329
Model Wheel-Sensor = 2.1979964306823

wheel delta-rpm = 16.2054494024196
Model ESA-Sensor = 0.0988344120002407

esa omega = 5.71610708891187e-5

Real EPE-Sensor = 0
Real WCE-Sensor = 3.68604747023245
Real WDE-Sensor = 1.84827374792807
Real Wheel-Sensor = -2.5617074146283

wheel delta-rpm = 48.6027629888543
Real ESA Sensor = 0.0894856023767895

esa omega = 1.71435293870847e-4

DONE
[15] (sp)
[16] (sp)
[17] (sp)
[18] (sp)
[19] (sp)
(20] (sp)
(21] (sp)
[22] (sp)

Model EPE-Sensor = 0.0767927842732255
Model WCE-Sensor = -1.36307192084975
Model WDE-Sensor = -1.36307192084975
Model Wheel-Sensor = 1.88921768229776

wheel delta-rpm = 32.3068079159412
Model ESA-Sensor = 0.0948812845400393

esa omega = 1.13954984624403e-4

Real EPE-Sensor = 0
Real WCE-Sensor = 0.0106087610796947
Real WDE-Sensor = 0.104650335238562
Real Wheel-Sensor = -0.145045364640647

wheel delta-rpm = 33.7220394670155
Real ESA Sensor = 0.0773118845446167

esa omega = 1.18946895000143e-4

DONE
(23] (diagnose)
The culprit is: M-EPE-A
()
[24] (epe-b-on)
()
[25] (sp)

Model EPE-Sensor = 0.0754563993155459
Model WCE-Sensor = -1.33935108785094
Model WDE-Sensor = -1.33935108785094
Model Wheel-Sensor = 1.8563406077614

wheel delta-rpm = 34.1631485237026
Model ESA-Sensor = 0.0915503557970732

esa omega = 1.20502807794228e-4
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Real EPE-Sensor = 0.0754563993155459
Real WCE-Sensor = -3.42201469500399
Real WDE-Sensor = -2.11524220464202
Real Wheel-Sensor = 2.93172569563384

wheel delta-rpm = 36.6537651626494
Real ESA Sensor = 0.0766006918663077

esa omega = 1.29287896730743e-4

DONE
[26] (sp)
[27] (sp)
[28] (sp)
[29] (sp)
(30] (sp)

Model EPE-Sensor = 0.0666999694085924
Model WCE-Sensor = -1.18392445700252
Model WDE-Sensor = -1.18392445700252
Model Wheel-Sensor = 1.64091929740549

wheel delta-rpm = 42.8953018514489
Model ESA-Sensor = 0.0884970698450377

esa omega = 1.51303510877935e-4

Real EPE-Sensor = 0.0666999694085924
Real WCE-Sensor = -1.15604167655712
Real WDE-Sensor = -1.36542729232223
Real Wheel-Sensor = 1.89248222715862

wheel delta-rpm =66.5136201350415
Real ESA Sensor = 0.0657298759526331

esa omega = 2.34611806264586e-4

DONE
[31] (diagnose)
No fault found!
0)
[32] (fail r-wce-a 'high)
HIGH
[33] (sp)

Model EPE-Sensor = 0.0641523589297699
Model WCE-Sensor = -1.13870437100342
Model WDE-Sensor = -1.13870437100342
Model Wheel-Sensor = 1.57824425821073

wheel delta-rpm = 44.4735461096596
Model ESA-Sensor = 0.0867637649818772

esa omega = 1.56870411843388e-4

Real EPE-Sensor = 0.0641523589297699
Real WCE-Sensor = 4.0256855305017
Real WDE-Sensor = 2.25916334898757
Real Wheel-Sensor = -3.13120040169677

wheel delta-rpm = 60.7275733668478
Real ESA Sensor = 0.0631533542225872

esa omega = 2.14202830168243e-4

DONE
(34] (sp)
[35] (sp)
[36] (up)
[37] (sp)
(38] (up)
(39] (up)
[40] (up)
[41] (up)
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Model EPE-Sensor = 0.0534192969715531
Model WCE-Sensor = -0.955285030704803
Model WDE-Sensor = -0.955285030704803
Model Wheel-Sensor = 1.32402505255686

wheel delta-rpm = 52.9058839091103
Model ESA-Sensor = 0.0808456172562096

esa omega = 1.86613583214089e-4

Real EPE-Sensor = 0.0534436838625508
Real WCE-Sensor = 4.11736175968981
Real WDE-Sensor = 3.95346468920179
Real Wheel-Sensor = -5.47950205923369

wheel delta-rpm = -16.9892669664936
Real ESA Sensor = 0.0552232898506788
esa omega = -5.99258107140743e-5

DONE
[42] (diagnose)
The culprit is: M-WCE-A
()
[43] (fix m-wce-a)
ON
[44] (sp)

Model EPE-Sensor = 0.0538979308942625
Model WCE-Sensor = -0.95668827337316
Model WDE-Sensor = -0.95668827337316
Model Wheel-Sensor = 1.3259699468952

wheel delta-rpm = 48.6258789085623
Model ESA-Sensor = 0.07365237202a3422

esa omega = 1.71516830068473e-4

Real EPE-Sensor = 0.0538979308942625
Real WCE-Sensor = 4.06354241344053
Real WDE-Sensor = 3.95869664997481
Real Wheel-Sensor = -5.48675355686508

wheel delta-rpm = -27.9689655260249
Real ESA Sensor = 0.0561320160130899

esa omega = -9.86542231213732e-5

DONE
[45] (sp)
[46] (sp)
[47] (sp)
[48] (sp)
[49] (sp)
[50] (sp)
[51] (sp)
[52] (sp)
[53] (sp)

Model EPE-Sensor = 0.0771126374075432
Model WCE-Sensor = -1.36874931398389
Model WDE-Sensor = -1.36874931398389
Model Wheel-Sensor = 1.89708654918168

wheel delta-rpm = 62.8001143700916
Model ESA-Sensor = 0.0626321111101381

esa omega = 2.21513251512642e-4

Real EPE-Sensor = 0.0771126374075432
Real WCE-Sensor = 3.23164734531692
Real WDE-Sensor = 3.36296137432913
Real Wheel-Sensor = -4.66106446482018

wheel delta-rpm = -121.086808896688
Real ESA Sensor = 0.083713706512694
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esa omega = -4.27106431620918e-4

DONE
[54] (diagnose)
The culprit is: M-WCE-A
()
[55] (describe r-wce-a)

INSTANCE DESCRIPTION

Instance of Class WCE

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : R-WCE-A
STATUS HIGH
STATE : 3.23164734531692
INPUT-LIST : (R-EPE-B)
OUTPUT-LIST : (R-WDE-A R-WCE-SENSOR)
GAIN : -17.75
XN-l : 0.0771126374075432
YN-1 : 0.0996255016722862
YN-2 : 0.0921836552187563
LIMIT : 25
TOLERANCE : l.e-6

(56] (fix r-wce-a)
ON
[57] (describe r-wce-a)

INSTANCE DESCRIPTION

Instance of Class WCE

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : R-WCE-A
STATUS ON
STATE : 3.23164734531692
INPUT-LIST (R-EPE-B)
OUTPUT-LIST : (R-WDE-A R-WCE-SENSOR)
GAIN : -17.75
XN-l : 0.0771126374075432
YN-1 : 0.0996255016722862
YN-2 : 0.0921836552187563
LIMIT : 25
TOLERANCE : 1.e-6

()
[58] (sp)

Model EPE-Sensor = 0.0817045775563893
Model WCE-Sensor = -1.45025625162591
Model WDE-Sensor = -1.45025625162591
Model Wheel-Sensor = 2.01005516475351

wheel delta-rpm = 59.7772560840267
Model ESA-Sensor = 0.0529874504023705

esa omega = 2.10850800105913e-4

keal EPE-Sensor = 0.0817045775563893
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Real WCE-Sensor = -1.8934141177262
Real WDE-Sensor = -0.202217687191201
Real Wheel-Sensor = 0.280273714447005
wheel delta-rpm = -121.001586292193

Real ESA Sensor = 0.0886114272232782
esa omega = -4.26805828088368e-4

DONE
[59] (sp)
[60] (sp)
[61] (sp)
[62] (sp)
[63] (sp)
[64] (sp)
[65] (sp)
[66] (sp)

Model EPE-Sensor = 0.116761393576748
Model WCE-Sensor = -2.07251473598728
Model WDE-Sensor = -2.07251473598728
Model Wheel-Sensor = 2.87250542407837

wheel delta-rpm = 79.8917980009012
Model ESA-Sensor = 0.0417864964063049

esa omega = 2.81800313930623e-4

Real EPE-Sensor = 0.116761393576748
Real WCE-Sensor = -2.52332649242971
Real WDE-Sensor = -2.26174401031693
Real Wheel-Sensor = 3.13477719829926

wheel delta-rpm = -86.3907738004784
Real ESA Sensor = 0.123250144995333

esa omega = -3.04723986527498e-4

DONE
[67] (diagnose)
No fault found!
()
(68] (fail r-wde-a "latchdown)
LATCHDOWN
[69] (sp)

Model EPE-Sensor = 0.120292141515445
Model WCE-Sensor = -2.13518551189915
Model WDE-Sensor = -2.13518551189915
Model Wheel-Sensor = 2.95936711949222

wheel delta-rpm = 82.8511651203934
Model ESA-Sensor = 0.0401418743031938

esa omega = 2.92238814554923e-4

Real EPE-Sensor = 0.120292141515445
Real WCE-Sensor = -2.56284574904082
Real WDE-Sensor = -25
Real Wheel-Sensor = 34.65

whetl delta-rpm = -51.7407738004784
Real LSA Sensor = 0.124646052947139

esa omega = -1.82503919862007e-4

DONE
[70] (sp)
[71] (sp)
[72] (sp)
(73] (sp)

Model EPE-Sensor = 0.121654547676407
Model WCE-Sensor = -2.15936822125623
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Model WDE-Sensor = -2.15936822125623
Model Wheel-Sensor = 2.99288435466114

wheel delta-rpm = 85.8440494750545
Model BSA-Sensor = 0.0384371008783302

esa omega = 3.02795539673214e-4

Real EPE-Sensor = 0.121654547676407
Real WCE-Sensor = -2.31983291060259
Real WDE-Sensor = -25
Real Wheel-Sensor =34.65
wheel delta-rpm =-51.7407738004784

Real BSA Sensor -0.124646052947139
esa omega = -1.82503919862007e-4

DONE
(74] (diagnose)
The culprit is: H-WDE-A
0)
[75] (wde-b-on)
0)
[76] (sp)

Model EPE-Sensor = 0.121654547676407
Model WCE-Sensor = -2.15936822125623
Model WDE-Sensor = -2.15936822125623
Model Wheel-Sensor = 2.99288435466114

wheel delta-rpm = 66.1584712483602
Model ESA-Sensor = 0.0137309314130346

esa omega = 2.3335909859917ge-4

Real EPE-Sensor =0.121654547676407
Real WCE-Sensor =-2.27264222606203
Real WDE-Sensor = -1.46143815096253
Real wheel-Sensor = 2.02555327723407

wheel delta-rpm =-49.7152205232443
Real ESA Sensor = 0.125671330891928

esa omega =-1.75359237132482e-4

DONE
[77] (sp)
[78] (sp)
(79] (sp)
(80] (sp)

Model EPE-Sensor = 0.127706123768205
Model WCE-Sensor = -2.26678369688565
Model WDE-Sensor = -2.26678369688565
Model Wheel-Sensor = 3.14176220388351

wheel delta-rpm = 78.4865994933728
Model ESA-Sensor = 0.00788819369912571

esa omega = 2.76843792855057e-4

Real EPE-Sensor = 0.127706123768205
Real WCE-Sensor = -2.43164314838878
Real WDE-Sensor = -2.12868853269769
Real Wheel-Sensor = 2.950362306319
wheel delta-rpm =-29.0940535921449

Real ESA Sensor -0.1321407509155
esa omega = -1.02622717737412e-4

DONE
(81] (diagnose)
No fault found!

[82] (fail r-wheel-a 'zero)
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ZERO
(83] (sp)

Model EPE-Sensor = 0.128969372893528
Model WCE-Sensor = -2.28920636886012
Model WDE-Sensor = -2.28920636886012
Model Wheel-Sensor = 3.17284002724012

wheel delta-rpm = 81.6594395206129
Model ESA-Sensor = 0.00626981518102173

esa omega = 2.88035271055582e-4

Real EPE-Sensor = 0.128969372893528
Real WCE-Sensor = -2.44953520764726
Real WDE-Sensor = -2.21497355456307
Real Wheel-Sensor = 0

wheel delta-rpm = -29.0940535921449
Real ESA Sensor = 0.13331680726077

esa omega = -1.02622717737412e-4

DONE
(84] (sp)
[85] (sp)

Model EPE-Sensor = 0.131265034879496
Model WCE-Sensor = -2.32995436911106
Model WDE-Sensor = -2.32995436911106
Model Wheel-Sensor = 3.22931675558793

wheel delta-rpm = 88.0898346676149
Model ESA-Sensor = 0.00283924980056922

esa omega = 3.10717040855064e-4

Real EPE-Sensor = 0.131265034879496
Real WCE-Sensor = -2.46785898030333
Real WDE-Sensor = -2.32832205452975
Real Wheel-Sensor = 0
wheel delta-rpm = -29.0940535921449

Real ESA Sensor = 0.135668919951312
esa omega = -1.02622717737412e-4

DONE
[86] (diagnose)
The suspects are: (M-WHEEL-SENSOR M-WHEEL-A)
()
[87] (wheel-b-on)
()
[88] (describe r-wheel-a)

INSTANCE DESCRIPTION

Instance of Class WHEEL

Class Variables :

Instance Variables
FAULT-LIST : (HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME : R-WHEEL-A
STATUS : OFF
STATE : 0
INPUT-LIST : (R-WDE-B)
OUTPUT-LIST : (R-ESA-A R-WHEEL-SENSOR)
GAIN : -1.386
DELTA-RPM : -29.0940535921449
LIMIT : 35
TOLERANCE : 1.e-6
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[89] (describe r-wheel-b)

INSTANCE DESCRIPTION

Instance of Class WHEEL

Class Variables:

Instance Variables
FAULT-LIST :(HIGH LOW ZERO LATCHUP LATCHDOWN)
NAME :R-WHEEL-A
STATUS ON
STATE 0
INPUT-LIST (R-WDE-B)
OUTPUT-LIST (R-ESA-A R-WHEEL-SENSOR)
GAIN :-1.386
DELTA-RPM :0
LIMIT : 35
TOLERANCE : .e-6

[90] (sp)

Model EPE-Sensor = 0.13241286587248
Model WCE-Sensor = -2.35032836923653
Model WDE-Sensor = -2.35032836923653
Model Wheel-Sensor = 3.25755511976183

wheel delta-rpm = 69.5864184455545
Model ESA-Sensor = -0.030431679085332

esa omega = 2.68331388585401e-4

Real EPE-Sensor = 0.13241286587248
Real WCE-Sensor = -2.4824486232592
Real WDE-Sensor = -2.37177202458425
Real Wheel-Sensor = 3.28727602607377

wheel delta-rpm = -29.0940535921449
Real ESA Sensor = 0.136713490362075

esa omega = -7.95946778258097e-5

DONE
(91] (ap)
[92] (up)

Model EPE-Sensor = 0.133432366593385
Model WCE-Sensor = -2.38191082663296
Model WDE-Sensor = -2.38191082663296
Model Wheel-Sensor = 3.30132840571329

wheel delta-rpm = 69.5864184455545
Model ESA-Sensor = -0.0336396382836957

esa omega = 2.91554840631963e-4

Real EPE-Sensor = 0.134192159246927
Real WCE-Sensor = -2.49433098607845
Real WDE-Sensor = -2.42766672425584
Real Wheel-Sensor = 3.36474607981859

wheel delta-rpm = -29.0940535921449
Real ESA Sensor = 0.13800072356495

esa omega = -3.25469483898684e-5

DONE
[93] (diagnose)
No fault found!

[94] (fail r-wde-b 'latchup)
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LATCHUP
[95] (sp)

Model EPE-Sensor = 0.134688706199391
Model WCE-Sensor = -2.38191082663296
Model WDE-Sensor = -2.38191082663296
Model Wheel-Sensor = 3.30132840571329

wheel delta-rpm = 69.5864184455545
Model ESA-Sensor = -0.0336396382836957

esa omega = 2.91554840631963e-4

Real EPE-Sensor = 0.134688706199391
Real WCE-Sensor = -2.48252212871888
Real WDE-Sensor = 25
Real Wheel-Sensor = -34.65
wheel delta-rpm = -29.0940535921449

Real ESA Sensor = 0.13853737807022
esa omega = -1.54767015055359e-4

DONE
(96] (sp)
(97] (sp)
(98] (sp)
[99] (sp)
(100] (sp)

Model EPE-Sensor = 0.134688706199391
Model WCE-Sensor = -2.40002153768849
Model WDE-Sensor = -2.40002153768849
Model Wheel-Sensor = 3.32642985123625

wheel delta-rpm = 69.5864184455545
Model ESA-Sensor = -0.0353438632293185

esa omega = 3.03288072325359e-4

Real EPE-Sensor = 0.13F212480996535
Real WCE-Sensor = -2.42718322309917
Real WDE-Sensor = 25
Real Wheel-Sensor = -34.65
wheel delta-rpm = -29.0940535921449

Real ESA Sensor = 0.13853737807022
esa omega = -1.54767015055359e-4

DONE
(101] (diagnose)
The culprit is: M-WDE-B()
[102] (fix r-wde-b)
ON
[103] (sp)

Model EPE-Sensor = 0.135212480996535
Model WCE-Sensor = -2.40002153768849
Model WDE-Sensor = -2.40002153768849
Model Wheel-Sensor = 3.32642985123625

wheel delta-rpm = 69.5864184455545
Model ESA-Sensor = -0.0512407472822511

esa omega = 1.17514097461358e-4

Real EPE-Sensor = 0.135212480996535
Real WCE-Sensor = -2.41893897668886
Real WDE-Sensor = -2.38806092695466
Real Wheel-Sensor = 3.30985244475916

wheel delta-rpm = -29.0940535921449
Real BSA Sensor = 0.139390744883019

esa omega = -1.430922 56427613e-4
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DONE
[104] (sp)
(105] (sp)

Model EPE-Sensor = 0.137514912085292
Model WCE-Sensor = -2.44088968951393
model WDE-Sensor = -2.44088968951393
Model Wheel-Sensor = 3.38307310966631

wheel delta-rpm = 69.5864184455545
Model BSA-Sensor = -0.0525876659062378

esa omega = 1.41252631900116e-4

Real EPE-Sensor =0.137514912085292
Real WCE-Sensor = -2.51668571521074
Real WDE-Sensor = -2.46693012192406
Real Wheel-Sensor =3.41916514898675

wheel delta-rpm =-29.0940535921449
Real ESA Sensor - 0.14213092373858

esa omega = -9.57166577999724e-5

DONE
(106] (diagnose)
No fault found!

[107] (transcript-off)
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Appendix M: Research Paper Summary

Chronological Order

84Davis Constraint propagation and constraint suspension

85Fink Uses rule and models (first principles) to diagnose faults. Similar to
Skinner's BDS.

85Scarl Model-based reasoning using symbolic inversion techniques on Space
Shuttle Oxygen loading system.

86Adams Applies to Space vehicle electrical system. Includes recovery

87Blasdel Describes PARAGON (generic model-based development tool)
application to a satellites EPS.

87Dekleer Constraint propagation/suspension & truth maintenance

87Golden Discussion of space support diagnostic systems: PARAGON (model-
based) a general purpose development tool; STARPLAN to automate
the ground control (combines rules, frames and PARAGON
representations).

87Hamscher Discusses issues in model-based troubleshooting. Good basic overview
of MBR. Good examples - again deKleer's work.

87Scarl Uses model-based reasoning for sensor validation. Sensors treated like
any other component.

88Ben-bassat Example of troubleshooting a dot-matrix printer. Builds the model
using graphic tools and a universal knowledge-base of common
components and their function.

88Chu Introduces a generic expert system shell for diagnostic reasoning.
Domain knowledge is represented as 5 different classes of object. Not
model-based reasoning. Reasoning follows human's method. Rules
are replaced by object.

88Davis Good overview of model-based reasoning. Updates research from
Davis84. Gives overview of other systems including DeKleer's GDE.

88Day Independent work done in UK on "deep models" as opposed to rules.
For complex systems ..... written LIST, recast in C.

88Hansen Diagnoses multiple faults using bi-directional simulation (constraint
propagation) and models which assume both normal functioning and
malfunctioning.
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88Hofmann Diagnoses analog circuits using a generic schematic knowledge
representation, acquisition, and manipulation system (SKRAM).
SKiRAM accepts knowledge and constructs models. Uses fault model
to constrain the search.

88Khaksari Uses shallow and deep knowledge in Expert Diagnostic System (EDS).
Looks very similar to -Skinner's BDS. Uses directed graph techniques.

88Skinner Applies both rules and models (BDS) to INS system

88Sticklen Good overall discussion on "functional approach" to diagnosis. Gives
model representation of a clothes pin. Medical Apps.

89Chen Uses candidate ordering to increase computing efficiency

89Dekleer Similar to Struss, uses behavioral models and probabilistic info to
derive additional diagnostic discrimination. For efficiency.

89Dvorak Uses systems dynamic behavior to diagnose continuously changing
systems.

89Gallanti Uses quantative/qualitative models & different levels of abstraction to
diagnose complex systems

89Hamscher Uses temporally coarse representation of behavior for model-based
troubleshooting of complex digital circuits. For efficiency.

89Padalkar Uses hierarchial Graph-based techniques for Real-time diagnoses. Very
fast - suitable for automatic space systems.

89Resnick Discusses performance issues in model-based reasoning. Systems that
learn are discussed.

89Struss Builds on deKJeer's GDE using device models and knowledge about
how a components behave when they are faulty. For efficiency.

89Tonga Work by deKleer and Williams has been extended to diagnose steady
state faults in analog feedback systems. (still requires a tech)

89Tongb Builds on work by deKleer. Uses model-based reasoning to auto-
matically generate n-ary trees used for diagnosis.

89Yost Refines Skinners work - uses model behavior (function) as well as
connectivity.

9OFulton Al expert article on model-based reasoning. Discusses work by Scarl.
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